Yuanpeng Xiong, Xuan He, Dan Zhao, Tao Jiang, Jianyang Zeng
{"title":"DeepRCI: predicting RNA-chromatin interactions via deep learning with multi-omics data","authors":"Yuanpeng Xiong, Xuan He, Dan Zhao, Tao Jiang, Jianyang Zeng","doi":"10.15302/j-qb-022-0316","DOIUrl":null,"url":null,"abstract":"Background : Chromatin-associated RNA (caRNA) acts as a ubiquitous epigenetic layer in eukaryotes, and has been reported to be essential in various biological processes, including gene transcription, chromatin remodeling and cellular differentiation. Recently, numerous experimental techniques have been developed to characterize genome-wide RNA-chromatin interactions to understand their underlying biological functions. However, these experimental methods are generally expensive, time-consuming, and limited in identifying all potential sites, while most of the existing computational methods are restricted to detecting only specific types of RNAs interacting with chromatin. Methods : Here, we propose a highly interpretable computational framework, named DeepRCI, to identify the interactions between various types of RNAs and chromatin. In this framework, we introduce a novel deep learning component called variformer and integrate multi-omics data to capture intrinsic genomic features at both RNA and DNA levels. Results : Extensive experiments demonstrate that DeepRCI can detect RNA-chromatin interactions more accurately when compared to the state-of-the-art baseline prediction methods. Furthermore, the sequence features extracted by DeepRCI can be well matched to known critical gene regulatory components, indicating that our model can provide useful biological insights into understanding the underlying mechanisms of RNA-chromatin interactions. In addition, based on the prediction results, we further delineate the relationships between RNA-chromatin interactions and cellular functions, including gene expression and the modulation of cell states. Conclusions : In summary, DeepRCI can serve as a useful tool for characterizing RNA-chromatin interactions and studying the underlying gene regulatory code.","PeriodicalId":45660,"journal":{"name":"Quantitative Biology","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.15302/j-qb-022-0316","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background : Chromatin-associated RNA (caRNA) acts as a ubiquitous epigenetic layer in eukaryotes, and has been reported to be essential in various biological processes, including gene transcription, chromatin remodeling and cellular differentiation. Recently, numerous experimental techniques have been developed to characterize genome-wide RNA-chromatin interactions to understand their underlying biological functions. However, these experimental methods are generally expensive, time-consuming, and limited in identifying all potential sites, while most of the existing computational methods are restricted to detecting only specific types of RNAs interacting with chromatin. Methods : Here, we propose a highly interpretable computational framework, named DeepRCI, to identify the interactions between various types of RNAs and chromatin. In this framework, we introduce a novel deep learning component called variformer and integrate multi-omics data to capture intrinsic genomic features at both RNA and DNA levels. Results : Extensive experiments demonstrate that DeepRCI can detect RNA-chromatin interactions more accurately when compared to the state-of-the-art baseline prediction methods. Furthermore, the sequence features extracted by DeepRCI can be well matched to known critical gene regulatory components, indicating that our model can provide useful biological insights into understanding the underlying mechanisms of RNA-chromatin interactions. In addition, based on the prediction results, we further delineate the relationships between RNA-chromatin interactions and cellular functions, including gene expression and the modulation of cell states. Conclusions : In summary, DeepRCI can serve as a useful tool for characterizing RNA-chromatin interactions and studying the underlying gene regulatory code.
期刊介绍:
Quantitative Biology is an interdisciplinary journal that focuses on original research that uses quantitative approaches and technologies to analyze and integrate biological systems, construct and model engineered life systems, and gain a deeper understanding of the life sciences. It aims to provide a platform for not only the analysis but also the integration and construction of biological systems. It is a quarterly journal seeking to provide an inter- and multi-disciplinary forum for a broad blend of peer-reviewed academic papers in order to promote rapid communication and exchange between scientists in the East and the West. The content of Quantitative Biology will mainly focus on the two broad and related areas: ·bioinformatics and computational biology, which focuses on dealing with information technologies and computational methodologies that can efficiently and accurately manipulate –omics data and transform molecular information into biological knowledge. ·systems and synthetic biology, which focuses on complex interactions in biological systems and the emergent functional properties, and on the design and construction of new biological functions and systems. Its goal is to reflect the significant advances made in quantitatively investigating and modeling both natural and engineered life systems at the molecular and higher levels. The journal particularly encourages original papers that link novel theory with cutting-edge experiments, especially in the newly emerging and multi-disciplinary areas of research. The journal also welcomes high-quality reviews and perspective articles.