Xiuquan Wang, Mian Umair Ahsan, Yunyun Zhou, Kai Wang
{"title":"Transformer-based DNA methylation detection on ionic signals from Oxford Nanopore sequencing data","authors":"Xiuquan Wang, Mian Umair Ahsan, Yunyun Zhou, Kai Wang","doi":"10.15302/j-qb-022-0323","DOIUrl":null,"url":null,"abstract":"Background : Oxford Nanopore long-read sequencing technology addresses current limitations for DNA methylation detection that are inherent in short-read bisulfite sequencing or methylation microarrays. A number of analytical tools, such as Nanopolish, Guppy/Tombo and DeepMod, have been developed to detect DNA methylation on Nanopore data. However, additional improvements can be made in computational efficiency, prediction accuracy, and contextual interpretation on complex genomics regions (such as repetitive regions, low GC density regions). Method : In the current study, we apply Transformer architecture to detect DNA methylation on ionic signals from Oxford Nanopore sequencing data. Transformer is an algorithm that adopts self-attention architecture in the neural networks and has been widely used in natural language processing. Results : Compared to traditional deep-learning method such as convolutional neural network (CNN) and recurrent neural network (RNN), Transformer may have specific advantages in DNA methylation detection, because the self-attention mechanism can assist the relationship detection between bases that are far from each other and pay more attention to important bases that carry characteristic methylation-specific signals within a specific sequence context. Conclusion : We demonstrated the ability of Transformers to detect methylation on ionic signal data.","PeriodicalId":45660,"journal":{"name":"Quantitative Biology","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.15302/j-qb-022-0323","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background : Oxford Nanopore long-read sequencing technology addresses current limitations for DNA methylation detection that are inherent in short-read bisulfite sequencing or methylation microarrays. A number of analytical tools, such as Nanopolish, Guppy/Tombo and DeepMod, have been developed to detect DNA methylation on Nanopore data. However, additional improvements can be made in computational efficiency, prediction accuracy, and contextual interpretation on complex genomics regions (such as repetitive regions, low GC density regions). Method : In the current study, we apply Transformer architecture to detect DNA methylation on ionic signals from Oxford Nanopore sequencing data. Transformer is an algorithm that adopts self-attention architecture in the neural networks and has been widely used in natural language processing. Results : Compared to traditional deep-learning method such as convolutional neural network (CNN) and recurrent neural network (RNN), Transformer may have specific advantages in DNA methylation detection, because the self-attention mechanism can assist the relationship detection between bases that are far from each other and pay more attention to important bases that carry characteristic methylation-specific signals within a specific sequence context. Conclusion : We demonstrated the ability of Transformers to detect methylation on ionic signal data.
期刊介绍:
Quantitative Biology is an interdisciplinary journal that focuses on original research that uses quantitative approaches and technologies to analyze and integrate biological systems, construct and model engineered life systems, and gain a deeper understanding of the life sciences. It aims to provide a platform for not only the analysis but also the integration and construction of biological systems. It is a quarterly journal seeking to provide an inter- and multi-disciplinary forum for a broad blend of peer-reviewed academic papers in order to promote rapid communication and exchange between scientists in the East and the West. The content of Quantitative Biology will mainly focus on the two broad and related areas: ·bioinformatics and computational biology, which focuses on dealing with information technologies and computational methodologies that can efficiently and accurately manipulate –omics data and transform molecular information into biological knowledge. ·systems and synthetic biology, which focuses on complex interactions in biological systems and the emergent functional properties, and on the design and construction of new biological functions and systems. Its goal is to reflect the significant advances made in quantitatively investigating and modeling both natural and engineered life systems at the molecular and higher levels. The journal particularly encourages original papers that link novel theory with cutting-edge experiments, especially in the newly emerging and multi-disciplinary areas of research. The journal also welcomes high-quality reviews and perspective articles.