Latha Ramireddy, Chih-Ho Lai, B. S. Low, Chuan Li, J. Hsieh, Jyh-Wei Lee, Hui-Yu Wu
{"title":"Cold Atmospheric Helium Plasma Induces Apoptosis by Increasing Intracellular Reactive Oxygen and Nitrogen Species","authors":"Latha Ramireddy, Chih-Ho Lai, B. S. Low, Chuan Li, J. Hsieh, Jyh-Wei Lee, Hui-Yu Wu","doi":"10.1615/PLASMAMED.2021036830","DOIUrl":null,"url":null,"abstract":"Cold atmospheric pressure plasma (CAPP) has been proposed as a novel method for anticancer therapy. This field gained much interest in the last decade, with biological applications such as wound healing, bacterial sterilization, and cancer treatment. However, the mechanism at the basis of plasma-cell interaction remains unclear. Here, we studied the effect of helium (He) gas CAPP on oral squamous cell carcinoma (OSCC) in vitro. CAPP treatment was performed under different treatment time conditions: 1, 3, and 5 min. Results showed that CAPP treatment induces cell death in OSCC cells in a dose-dependent manner. He-CAPP also induces cell death and G1 cell cycle arrest associated with the ATM/P53 pathway. Furthermore, CAPP activates the mitochondria-mediated apoptosis pathway by enhancing Bax expression and of the Bcl-2 protein suppression. Hydrogen peroxide (H2O2) generation increased immediately after He plasma treatment but reached basal level after 3 h. Further studies showed that CAPP increases intracellular ROS and RNS and reverts after a long period of plasma treatment. Taken together, these results indicated that He-CAPP induces cell death and cell cycle arrest and activates mitochondria-mediated apoptosis by increasing intracellular reactive oxygen and nitrogen species (ROS and RNS) in OSCC cells. Our study provides deep understanding of He-CAPP’s effect on OSCC cells. We suggest that CAPP could be a potential therapeutic and clinical research tool for oral cancer treatment.","PeriodicalId":53607,"journal":{"name":"Plasma Medicine","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/PLASMAMED.2021036830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 2
Abstract
Cold atmospheric pressure plasma (CAPP) has been proposed as a novel method for anticancer therapy. This field gained much interest in the last decade, with biological applications such as wound healing, bacterial sterilization, and cancer treatment. However, the mechanism at the basis of plasma-cell interaction remains unclear. Here, we studied the effect of helium (He) gas CAPP on oral squamous cell carcinoma (OSCC) in vitro. CAPP treatment was performed under different treatment time conditions: 1, 3, and 5 min. Results showed that CAPP treatment induces cell death in OSCC cells in a dose-dependent manner. He-CAPP also induces cell death and G1 cell cycle arrest associated with the ATM/P53 pathway. Furthermore, CAPP activates the mitochondria-mediated apoptosis pathway by enhancing Bax expression and of the Bcl-2 protein suppression. Hydrogen peroxide (H2O2) generation increased immediately after He plasma treatment but reached basal level after 3 h. Further studies showed that CAPP increases intracellular ROS and RNS and reverts after a long period of plasma treatment. Taken together, these results indicated that He-CAPP induces cell death and cell cycle arrest and activates mitochondria-mediated apoptosis by increasing intracellular reactive oxygen and nitrogen species (ROS and RNS) in OSCC cells. Our study provides deep understanding of He-CAPP’s effect on OSCC cells. We suggest that CAPP could be a potential therapeutic and clinical research tool for oral cancer treatment.
Plasma MedicinePhysics and Astronomy-Physics and Astronomy (all)
CiteScore
1.40
自引率
0.00%
发文量
14
期刊介绍:
Technology has always played an important role in medicine and there are many journals today devoted to medical applications of ionizing radiation, lasers, ultrasound, magnetic resonance and others. Plasma technology is a relative newcomer to the field of medicine. Experimental work conducted at several major universities, research centers and companies around the world over the recent decade demonstrates that plasma can be used in variety of medical applications. It is already widely used surgeries and endoscopic procedures. It has been shown to control properties of cellular and tissue matrices, including biocompatibility of various substrates. Non-thermal plasma has been demonstrated to deactivate dangerous pathogens and to stop bleeding without damaging healthy tissue. It can be used to promote wound healing and to treat cancer. Understanding of various mechanisms by which plasma can interact with living systems, including effects of reactive oxygen species, reactive nitrogen species and charges, has begun to emerge recently. The aim of the Plasma Medicine journal will be to provide a forum where the above topics as well as topics closely related to them can be presented and discussed. Existing journals on plasma science and technology are aimed for audiences with primarily engineering and science background. The field of Plasma Medicine, on the other hand, is highly interdisciplinary. Some of prospective readers and contributors of the Plasma Medicine journal are expected to have background in medicine and biology. Others might be more familiar with plasma science. The goal of the proposed Plasma Medicine journal is to bridge the gap between audiences with such different backgrounds, without sacrificing the quality of the papers be their emphasis on medicine, biology or plasma science and technology.