{"title":"Time-consistency of risk measures with GARCH volatilities and their estimation","authors":"C. Klüppelberg, Jianing Zhang","doi":"10.1515/strm-2015-0010","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we study time-consistent risk measures for returns that are given by a GARCH(1,1) model. We present a construction of risk measures based on their static counterparts that overcomes the lack of time-consistency. We then study in detail our construction for the risk measures Value-at-Risk (VaR) and Average Value-at-Risk (AVaR). While in the VaR case we can derive an analytical formula for its time-consistent counterpart, in the AVaR case we derive lower and upper bounds to its time-consistent version. Furthermore, we incorporate techniques from extreme value theory (EVT) to allow for a more tail-geared statistical analysis of the corresponding risk measures. We conclude with an application of our results to a data set of stock prices.","PeriodicalId":44159,"journal":{"name":"Statistics & Risk Modeling","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2015-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/strm-2015-0010","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Risk Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/strm-2015-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract In this paper we study time-consistent risk measures for returns that are given by a GARCH(1,1) model. We present a construction of risk measures based on their static counterparts that overcomes the lack of time-consistency. We then study in detail our construction for the risk measures Value-at-Risk (VaR) and Average Value-at-Risk (AVaR). While in the VaR case we can derive an analytical formula for its time-consistent counterpart, in the AVaR case we derive lower and upper bounds to its time-consistent version. Furthermore, we incorporate techniques from extreme value theory (EVT) to allow for a more tail-geared statistical analysis of the corresponding risk measures. We conclude with an application of our results to a data set of stock prices.
期刊介绍:
Statistics & Risk Modeling (STRM) aims at covering modern methods of statistics and probabilistic modeling, and their applications to risk management in finance, insurance and related areas. The journal also welcomes articles related to nonparametric statistical methods and stochastic processes. Papers on innovative applications of statistical modeling and inference in risk management are also encouraged. Topics Statistical analysis for models in finance and insurance Credit-, market- and operational risk models Models for systemic risk Risk management Nonparametric statistical inference Statistical analysis of stochastic processes Stochastics in finance and insurance Decision making under uncertainty.