S. Battiston, G. Caldarelli, M. d’Errico, S. Gurciullo
{"title":"Leveraging the network: A stress-test framework based on DebtRank","authors":"S. Battiston, G. Caldarelli, M. d’Errico, S. Gurciullo","doi":"10.1515/strm-2015-0005","DOIUrl":null,"url":null,"abstract":"Abstract We develop a novel stress-test framework to monitor systemic risk in financial systems. The modular structure of the framework allows to accommodate for a variety of shock scenarios, methods to estimate interbank exposures and mechanisms of distress propagation. The main features are as follows. First, the framework allows to estimate and disentangle not only first-round effects (i.e. shock on external assets) and second-round effects (i.e. distress induced in the interbank network), but also third-round effects induced by possible fire sales. Second, it allows to monitor at the same time the impact of shocks on individual or groups of financial institutions as well as their vulnerability to shocks on counterparties or certain asset classes. Third, it includes estimates for loss distributions, thus combining network effects with familiar risk measures such as VaR and CVaR. Fourth, in order to perform robustness analyses and cope with incomplete data, the framework features a module for the generation of sets of networks of interbank exposures that are coherent with the total lending and borrowing of each bank. As an illustration, we carry out a stress-test exercise on a dataset of listed European banks over the years 2008–2013. We find that second-round and third-round effects dominate first-round effects, therefore suggesting that most current stress-test frameworks might lead to a severe underestimation of systemic risk.","PeriodicalId":44159,"journal":{"name":"Statistics & Risk Modeling","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/strm-2015-0005","citationCount":"96","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Risk Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/strm-2015-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 96
Abstract
Abstract We develop a novel stress-test framework to monitor systemic risk in financial systems. The modular structure of the framework allows to accommodate for a variety of shock scenarios, methods to estimate interbank exposures and mechanisms of distress propagation. The main features are as follows. First, the framework allows to estimate and disentangle not only first-round effects (i.e. shock on external assets) and second-round effects (i.e. distress induced in the interbank network), but also third-round effects induced by possible fire sales. Second, it allows to monitor at the same time the impact of shocks on individual or groups of financial institutions as well as their vulnerability to shocks on counterparties or certain asset classes. Third, it includes estimates for loss distributions, thus combining network effects with familiar risk measures such as VaR and CVaR. Fourth, in order to perform robustness analyses and cope with incomplete data, the framework features a module for the generation of sets of networks of interbank exposures that are coherent with the total lending and borrowing of each bank. As an illustration, we carry out a stress-test exercise on a dataset of listed European banks over the years 2008–2013. We find that second-round and third-round effects dominate first-round effects, therefore suggesting that most current stress-test frameworks might lead to a severe underestimation of systemic risk.
期刊介绍:
Statistics & Risk Modeling (STRM) aims at covering modern methods of statistics and probabilistic modeling, and their applications to risk management in finance, insurance and related areas. The journal also welcomes articles related to nonparametric statistical methods and stochastic processes. Papers on innovative applications of statistical modeling and inference in risk management are also encouraged. Topics Statistical analysis for models in finance and insurance Credit-, market- and operational risk models Models for systemic risk Risk management Nonparametric statistical inference Statistical analysis of stochastic processes Stochastics in finance and insurance Decision making under uncertainty.