{"title":"Stochastic orderings with respect to a capacity and an application to a financial optimization problem","authors":"Miryana Grigorova","doi":"10.1515/strm-2013-1151","DOIUrl":null,"url":null,"abstract":"Abstract By analogy with the classical case of a probability measure, we extend the notion of increasing convex (concave) stochastic dominance relation to the case of a normalized monotone (but not necessarily additive) set function also called a capacity. We give different characterizations of this relation establishing a link to the notions of distribution function and quantile function with respect to the given capacity. The Choquet integral is extensively used as a tool. In the second part of the paper, we give an application to a financial optimization problem whose constraints are expressed by means of the increasing convex stochastic dominance relation with respect to a capacity. The problem is solved by using, among other tools, a result established in our previous work, namely a new version of the classical upper (resp. lower) Hardy–Littlewood's inequality generalized to the case of a continuous from below concave (resp. convex) capacity. The value function of the optimization problem is interpreted in terms of risk measures (or premium principles).","PeriodicalId":44159,"journal":{"name":"Statistics & Risk Modeling","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2014-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/strm-2013-1151","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Risk Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/strm-2013-1151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 10
Abstract
Abstract By analogy with the classical case of a probability measure, we extend the notion of increasing convex (concave) stochastic dominance relation to the case of a normalized monotone (but not necessarily additive) set function also called a capacity. We give different characterizations of this relation establishing a link to the notions of distribution function and quantile function with respect to the given capacity. The Choquet integral is extensively used as a tool. In the second part of the paper, we give an application to a financial optimization problem whose constraints are expressed by means of the increasing convex stochastic dominance relation with respect to a capacity. The problem is solved by using, among other tools, a result established in our previous work, namely a new version of the classical upper (resp. lower) Hardy–Littlewood's inequality generalized to the case of a continuous from below concave (resp. convex) capacity. The value function of the optimization problem is interpreted in terms of risk measures (or premium principles).
期刊介绍:
Statistics & Risk Modeling (STRM) aims at covering modern methods of statistics and probabilistic modeling, and their applications to risk management in finance, insurance and related areas. The journal also welcomes articles related to nonparametric statistical methods and stochastic processes. Papers on innovative applications of statistical modeling and inference in risk management are also encouraged. Topics Statistical analysis for models in finance and insurance Credit-, market- and operational risk models Models for systemic risk Risk management Nonparametric statistical inference Statistical analysis of stochastic processes Stochastics in finance and insurance Decision making under uncertainty.