Deep Learning-based Handheld Device-Enabled Symptom-driven Recording: A Pragmatic Approach for the Detection of Post-ablation Atrial Fibrillation Recurrence
{"title":"Deep Learning-based Handheld Device-Enabled Symptom-driven Recording: A Pragmatic Approach for the Detection of Post-ablation Atrial Fibrillation Recurrence","authors":"Lai-Te Chen, Chenyang Jiang","doi":"10.15212/cvia.2023.0048","DOIUrl":null,"url":null,"abstract":"Objective: Symptom-driven electrocardiogram (ECG) recording plays a significant role in the detection of post-ablation atrial fibrillation recurrence (AFR). However, making timely medical contact whenever symptoms occur may not be practical. Herein, a deep learning (DL)-based handheld device was deployed to facilitate symptom-driven monitoring. Methods: A cohort of patients with paroxysmal atrial fibrillation (AF) was trained to use a DL-based handheld device to record ECG signals whenever symptoms presented after the ablation. Additionally, 24-hour Holter monitoring and 12-lead ECG were scheduled at 3, 6, 9, and 12 months post-ablation. The detection of AFR by the different modalities was explored. Results: A total of 22 of 67 patients experienced AFR. The handheld device and 24-hour Holter monitor detected 19 and 8 AFR events, respectively, five of which were identified by both modalities. A larger portion of ECG tracings was recorded for patients with than without AFR [362(330) vs. 132(133), P=0.01)], and substantial numbers of AFR events were recorded from 18:00 to 24:00. Compared to Holter, more AFR events were detected by the handheld device in earlier stages (HR=1.6, 95% CI 1.2–2.2, P<0.01). Conclusions: The DL-based handheld device-enabled symptom-driven recording, compared with the conventional monitoring strategy, improved AFR detection and enabled more timely identification of symptomatic episodes.","PeriodicalId":41559,"journal":{"name":"Cardiovascular Innovations and Applications","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Innovations and Applications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.15212/cvia.2023.0048","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Symptom-driven electrocardiogram (ECG) recording plays a significant role in the detection of post-ablation atrial fibrillation recurrence (AFR). However, making timely medical contact whenever symptoms occur may not be practical. Herein, a deep learning (DL)-based handheld device was deployed to facilitate symptom-driven monitoring. Methods: A cohort of patients with paroxysmal atrial fibrillation (AF) was trained to use a DL-based handheld device to record ECG signals whenever symptoms presented after the ablation. Additionally, 24-hour Holter monitoring and 12-lead ECG were scheduled at 3, 6, 9, and 12 months post-ablation. The detection of AFR by the different modalities was explored. Results: A total of 22 of 67 patients experienced AFR. The handheld device and 24-hour Holter monitor detected 19 and 8 AFR events, respectively, five of which were identified by both modalities. A larger portion of ECG tracings was recorded for patients with than without AFR [362(330) vs. 132(133), P=0.01)], and substantial numbers of AFR events were recorded from 18:00 to 24:00. Compared to Holter, more AFR events were detected by the handheld device in earlier stages (HR=1.6, 95% CI 1.2–2.2, P<0.01). Conclusions: The DL-based handheld device-enabled symptom-driven recording, compared with the conventional monitoring strategy, improved AFR detection and enabled more timely identification of symptomatic episodes.