Numerical Prediction for the Effects of Welding Interpass Temperature on the Thermal History and Microstructure of Duplex Stainless Steels

IF 1.5 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
C. R. Xavier, Horácio Guimarães Delgado Junior, Matheus Gomes Rebello, Raí Ramos Lisbôa, Ana Carolina Martins Silva, J. A. Castro
{"title":"Numerical Prediction for the Effects of Welding Interpass Temperature on the Thermal History and Microstructure of Duplex Stainless Steels","authors":"C. R. Xavier, Horácio Guimarães Delgado Junior, Matheus Gomes Rebello, Raí Ramos Lisbôa, Ana Carolina Martins Silva, J. A. Castro","doi":"10.1590/1980-5373-mr-2022-0529","DOIUrl":null,"url":null,"abstract":"Numerical simulation was used to predict the thermal behavior and the resulting microstructure at the heat-affected zone (HAZ) of a 170 mm diameter and 3.5 mm thickness super duplex stainless steel (SDSS) UNS S32750 tube. In order to evaluate the thermal response from the model, a usual welding situation involving interpass temperature (IT) and its influence on the HAZ microstructure was exploited. Thus, two superimposed autogenous welding passes were simulated, the first clockwise with the tube in the room temperature and the second, counterclockwise, with the tube at the temperature of 250 o C. Even subjected to successive thermal cycles and high interpass temperature, the proportion and morphology of the phases at the HAZ and Fusion Zone (FZ) did not present significant differences when comparing the two welding passes. Meanwhile, nitrogen losses should be avoided during welding in order to obtain a balanced microstructure in DSS welds, contributing to guarantee satisfactory toughness in addition to resistance to pitting corrosion. The predictions from the simulation were validated by using experimental results obtained from the autogenous TIG (Tungsten Inert Gas) process.","PeriodicalId":18331,"journal":{"name":"Materials Research-ibero-american Journal of Materials","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research-ibero-american Journal of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1590/1980-5373-mr-2022-0529","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Numerical simulation was used to predict the thermal behavior and the resulting microstructure at the heat-affected zone (HAZ) of a 170 mm diameter and 3.5 mm thickness super duplex stainless steel (SDSS) UNS S32750 tube. In order to evaluate the thermal response from the model, a usual welding situation involving interpass temperature (IT) and its influence on the HAZ microstructure was exploited. Thus, two superimposed autogenous welding passes were simulated, the first clockwise with the tube in the room temperature and the second, counterclockwise, with the tube at the temperature of 250 o C. Even subjected to successive thermal cycles and high interpass temperature, the proportion and morphology of the phases at the HAZ and Fusion Zone (FZ) did not present significant differences when comparing the two welding passes. Meanwhile, nitrogen losses should be avoided during welding in order to obtain a balanced microstructure in DSS welds, contributing to guarantee satisfactory toughness in addition to resistance to pitting corrosion. The predictions from the simulation were validated by using experimental results obtained from the autogenous TIG (Tungsten Inert Gas) process.
焊接道间温度对双相不锈钢热历史和组织影响的数值预测
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Research-ibero-american Journal of Materials
Materials Research-ibero-american Journal of Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
2.40
自引率
11.80%
发文量
161
审稿时长
3 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信