J. A. Cavalcante, Augusto H. M. Silva, G. I. Gadotti, Ádamo S. de Araújo, R. D. C. M. Monteiro
{"title":"Stabilization of an MQ-3 Sensor for Ethanol Measurement in Cowpea Seeds","authors":"J. A. Cavalcante, Augusto H. M. Silva, G. I. Gadotti, Ádamo S. de Araújo, R. D. C. M. Monteiro","doi":"10.1590/1809-4430-eng.agric.v43n2e20200046/2023","DOIUrl":null,"url":null,"abstract":"The widespread adoption of sensor technology has made it a standard practice for obtaining precise and timely information during the harvest and post-harvest periods. One sensor that has gained popularity for post-harvest seed monitoring is the MQ-3, which identifies ethanol in the air as products undergo fermentation. However, these sensors typically require a stable operation. This study aimed to assess the stabilization time of an MQ-3 sensor when measuring ethanol levels in anaerobic bean seeds. We used six bean seed samples, each with an average moisture content of around 14%. We employed a completely randomized experimental design with nine repetitions for each sample. Every repetition consisted of 25 bean seeds placed in sealed flasks containing 70 mL of distilled water. This setup induced anoxic conditions within the flask, promoting anaerobic respiration in the seeds. After 24 hours, we exposed an air sample to the MQ-3 sensor and took readings at various time intervals (12-14, 19-21, 36-38, 68-70, 130-132, 192-194, 314-316, 616-618 seconds). The average stabilization time for the MQ-3 sensor while quantifying ethanol concentrations in the bean samples were approximately 23 seconds. The sensor demonstrated efficacy, convenience, and rapidity in assessing ethanol levels in anaerobic bean seeds.","PeriodicalId":49078,"journal":{"name":"Engenharia Agricola","volume":"47 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engenharia Agricola","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1590/1809-4430-eng.agric.v43n2e20200046/2023","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The widespread adoption of sensor technology has made it a standard practice for obtaining precise and timely information during the harvest and post-harvest periods. One sensor that has gained popularity for post-harvest seed monitoring is the MQ-3, which identifies ethanol in the air as products undergo fermentation. However, these sensors typically require a stable operation. This study aimed to assess the stabilization time of an MQ-3 sensor when measuring ethanol levels in anaerobic bean seeds. We used six bean seed samples, each with an average moisture content of around 14%. We employed a completely randomized experimental design with nine repetitions for each sample. Every repetition consisted of 25 bean seeds placed in sealed flasks containing 70 mL of distilled water. This setup induced anoxic conditions within the flask, promoting anaerobic respiration in the seeds. After 24 hours, we exposed an air sample to the MQ-3 sensor and took readings at various time intervals (12-14, 19-21, 36-38, 68-70, 130-132, 192-194, 314-316, 616-618 seconds). The average stabilization time for the MQ-3 sensor while quantifying ethanol concentrations in the bean samples were approximately 23 seconds. The sensor demonstrated efficacy, convenience, and rapidity in assessing ethanol levels in anaerobic bean seeds.
期刊介绍:
A revista Engenharia Agrícola existe desde 1972 como o principal veículo editorial de caráter técnico-científico da SBEA - Associação Brasileira de Engenharia Agrícola.
Publicar artigos científicos, artigos técnicos e revisões bibliográficas inéditos, fomentando a divulgação do conhecimento prático e científico na área de Engenharia Agrícola.