A characterization of weighted popular matchings under matroid constraints

Q4 Decision Sciences
Naoyuki Kamiyama
{"title":"A characterization of weighted popular matchings under matroid constraints","authors":"Naoyuki Kamiyama","doi":"10.15807/JORSJ.61.2","DOIUrl":null,"url":null,"abstract":"The popular matching problem introduced by Abraham, Irving, Kavitha, and Mehlhorn is one of bipartite matching problems with one-sided preference lists. In this paper, we first propose a matroid generalization of the weighted variant of popular matchings introduced by Mestre. Then we give a characterization of weighted popular matchings in bipartite graphs with matroid constraints and one-sided preference lists containing no ties. This characterization is based on the characterization of weighted popular matchings proved by Mestre. Lastly we prove that we can decide whether a given matching is a weighted popular matching under matroid constraints in polynomial time by using our characterization.","PeriodicalId":51107,"journal":{"name":"Journal of the Operations Research Society of Japan","volume":"61 1","pages":"2-17"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15807/JORSJ.61.2","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Operations Research Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15807/JORSJ.61.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

The popular matching problem introduced by Abraham, Irving, Kavitha, and Mehlhorn is one of bipartite matching problems with one-sided preference lists. In this paper, we first propose a matroid generalization of the weighted variant of popular matchings introduced by Mestre. Then we give a characterization of weighted popular matchings in bipartite graphs with matroid constraints and one-sided preference lists containing no ties. This characterization is based on the characterization of weighted popular matchings proved by Mestre. Lastly we prove that we can decide whether a given matching is a weighted popular matching under matroid constraints in polynomial time by using our characterization.
矩阵约束下加权流行匹配的刻画
Abraham, Irving, Kavitha, Mehlhorn等人提出的比较流行的匹配问题是带有片面偏好表的二部匹配问题。在本文中,我们首先提出了Mestre引入的流行匹配的加权变体的矩阵泛化。然后给出了具有矩阵约束的二部图和不含联系的单侧偏好表的加权流行匹配的刻画。这种表征是基于Mestre证明的加权流行匹配的表征。最后,我们证明了在多项式时间内可以判定给定匹配是否为矩阵约束下的加权流行匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the Operations Research Society of Japan
Journal of the Operations Research Society of Japan 管理科学-运筹学与管理科学
CiteScore
0.70
自引率
0.00%
发文量
12
审稿时长
12 months
期刊介绍: The journal publishes original work and quality reviews in the field of operations research and management science to OR practitioners and researchers in two substantive categories: operations research methods; applications and practices of operations research in industry, public sector, and all areas of science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信