DYNAMIC SOFTWARE AVAILABILITY MODEL WITH REJUVENATION

Q4 Decision Sciences
T. Dohi, H. Okamura
{"title":"DYNAMIC SOFTWARE AVAILABILITY MODEL WITH REJUVENATION","authors":"T. Dohi, H. Okamura","doi":"10.15807/JORSJ.59.270","DOIUrl":null,"url":null,"abstract":"In this paper we consider an operational software system with multi-stage degradation levels due to software aging, and derive the optimal dynamic software rejuvenation policy maximizing the steady-state system availability, via the semi-Markov decision process. Also, we develop a reinforcement learning algorithm based on Q-learning as an on-line adaptive nonparametric estimation scheme without the knowledge of transition rate to each degradation level. In numerical examples, we present how to derive the optimal software rejuvenation policy with the decision table, and investigate the asymptotic behavior of estimates of the optimal software rejuvenation policy with the reinforcement learning.","PeriodicalId":51107,"journal":{"name":"Journal of the Operations Research Society of Japan","volume":"59 1","pages":"270-290"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15807/JORSJ.59.270","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Operations Research Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15807/JORSJ.59.270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper we consider an operational software system with multi-stage degradation levels due to software aging, and derive the optimal dynamic software rejuvenation policy maximizing the steady-state system availability, via the semi-Markov decision process. Also, we develop a reinforcement learning algorithm based on Q-learning as an on-line adaptive nonparametric estimation scheme without the knowledge of transition rate to each degradation level. In numerical examples, we present how to derive the optimal software rejuvenation policy with the decision table, and investigate the asymptotic behavior of estimates of the optimal software rejuvenation policy with the reinforcement learning.
动态软件可用性模型
本文考虑了一个由于软件老化而具有多阶段退化的运行软件系统,并通过半马尔可夫决策过程导出了使稳态系统可用性最大化的最优动态软件再生策略。此外,我们开发了一种基于q学习的强化学习算法,作为一种在线自适应非参数估计方案,无需知道每个退化水平的过渡率。在数值例子中,我们给出了如何利用决策表推导出最优软件复兴策略,并利用强化学习研究了最优软件复兴策略估计的渐近行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the Operations Research Society of Japan
Journal of the Operations Research Society of Japan 管理科学-运筹学与管理科学
CiteScore
0.70
自引率
0.00%
发文量
12
审稿时长
12 months
期刊介绍: The journal publishes original work and quality reviews in the field of operations research and management science to OR practitioners and researchers in two substantive categories: operations research methods; applications and practices of operations research in industry, public sector, and all areas of science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信