Influence of 2D and 3D Arrangements of Aramid Fibers on the Dart Drop Test of Epoxy Composites

IF 0.9 Q3 ENGINEERING, AEROSPACE
Carlos Alberto Fernandes Marlet, T. Silva, M. C. Rezende
{"title":"Influence of 2D and 3D Arrangements of Aramid Fibers on the Dart Drop Test of Epoxy Composites","authors":"Carlos Alberto Fernandes Marlet, T. Silva, M. C. Rezende","doi":"10.1590/jatm.v15.1308","DOIUrl":null,"url":null,"abstract":"The use of continuous fibers reinforced polymeric composites has increased substantially in the last year’s due to their high specific mechanical strength compared to other materials. Despite this property, this class of material is susceptible to low, medium, or high energy impacts, which can cause severe damage to composite laminates. One of the most serious damages is delamination, which can lead to partial or total rupture of the structure. In order to minimize this problem, several studies have been carried out in this area. In this context, this work aims to evaluate the influence of aramid reinforcement with bi-directional (2D) and tri-directional (3D) arrangements impregnated with two epoxy resins of different stiffness on the impact strength of composites submitted to the 340 J dart drop test. The impact results showed that the 2D composites had lower impact strength than the 3D ones, with the presence of perforations (when impregnated with the more rigid resin) and delaminations. Delaminations occurred regardless of the epoxy resin used in the impregnation. On the other hand, the 3D composites impregnated with the less rigid epoxy matrix absorbed more energy (3DF: 97.9%) with less deformation and no delamination compared to the 2D laminate (2DF: 96.1%) produced.","PeriodicalId":14872,"journal":{"name":"Journal of Aerospace Technology and Management","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerospace Technology and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/jatm.v15.1308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

The use of continuous fibers reinforced polymeric composites has increased substantially in the last year’s due to their high specific mechanical strength compared to other materials. Despite this property, this class of material is susceptible to low, medium, or high energy impacts, which can cause severe damage to composite laminates. One of the most serious damages is delamination, which can lead to partial or total rupture of the structure. In order to minimize this problem, several studies have been carried out in this area. In this context, this work aims to evaluate the influence of aramid reinforcement with bi-directional (2D) and tri-directional (3D) arrangements impregnated with two epoxy resins of different stiffness on the impact strength of composites submitted to the 340 J dart drop test. The impact results showed that the 2D composites had lower impact strength than the 3D ones, with the presence of perforations (when impregnated with the more rigid resin) and delaminations. Delaminations occurred regardless of the epoxy resin used in the impregnation. On the other hand, the 3D composites impregnated with the less rigid epoxy matrix absorbed more energy (3DF: 97.9%) with less deformation and no delamination compared to the 2D laminate (2DF: 96.1%) produced.
芳纶纤维二维和三维排列对环氧复合材料飞镖跌落试验的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
16
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信