The kinematic formula in the 3D-Heisenberg group

IF 0.9 3区 数学 Q2 MATHEMATICS
Yen-Chang Huang
{"title":"The kinematic formula in the 3D-Heisenberg group","authors":"Yen-Chang Huang","doi":"10.1515/agms-2016-0020","DOIUrl":null,"url":null,"abstract":"By studying the group of rigid motions, $PSH(1)$, in the 3D-Heisenberg group $H_1$, we define the density and the measure for the sets of horizontal lines. We show that the volume of a convex domain $D\\subset H_1$ is equal to the integral of length of chord over all horizontal lines intersecting $D$. As the classical result in integral geometry, we also define the kinematic density for $PSH(1)$ and show the probability of randomly throwing a vector $v$ interesting the convex domain $D\\subset D_0$ under the condition that $v$ is contained in $D_0$. Both results show the relationship connecting the geometric probability and the natural geometric quantity in Cheng-Hwang-Malchiodi-Yang's work approached by the variational method.","PeriodicalId":48637,"journal":{"name":"Analysis and Geometry in Metric Spaces","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2016-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry in Metric Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2016-0020","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

By studying the group of rigid motions, $PSH(1)$, in the 3D-Heisenberg group $H_1$, we define the density and the measure for the sets of horizontal lines. We show that the volume of a convex domain $D\subset H_1$ is equal to the integral of length of chord over all horizontal lines intersecting $D$. As the classical result in integral geometry, we also define the kinematic density for $PSH(1)$ and show the probability of randomly throwing a vector $v$ interesting the convex domain $D\subset D_0$ under the condition that $v$ is contained in $D_0$. Both results show the relationship connecting the geometric probability and the natural geometric quantity in Cheng-Hwang-Malchiodi-Yang's work approached by the variational method.
三维海森堡群的运动公式
通过研究3D-Heisenberg群H_1$中的刚性运动群PSH(1)$,定义了水平线集合的密度和测度。我们证明了凸域$D\子集H_1$的体积等于弦长在与$D$相交的所有水平线上的积分。作为积分几何中的经典结果,我们还定义了PSH(1)$的运动密度,并给出了在$v$包含在$D_0$中的条件下,将向量$v$抛掷到凸域$D\子集D_0$中的概率。这两个结果都显示了Cheng-Hwang-Malchiodi-Yang用变分方法研究的几何概率与自然几何量之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Geometry in Metric Spaces
Analysis and Geometry in Metric Spaces Mathematics-Geometry and Topology
CiteScore
1.80
自引率
0.00%
发文量
8
审稿时长
16 weeks
期刊介绍: Analysis and Geometry in Metric Spaces is an open access electronic journal that publishes cutting-edge research on analytical and geometrical problems in metric spaces and applications. We strive to present a forum where all aspects of these problems can be discussed. AGMS is devoted to the publication of results on these and related topics: Geometric inequalities in metric spaces, Geometric measure theory and variational problems in metric spaces, Analytic and geometric problems in metric measure spaces, probability spaces, and manifolds with density, Analytic and geometric problems in sub-riemannian manifolds, Carnot groups, and pseudo-hermitian manifolds. Geometric control theory, Curvature in metric and length spaces, Geometric group theory, Harmonic Analysis. Potential theory, Mass transportation problems, Quasiconformal and quasiregular mappings. Quasiconformal geometry, PDEs associated to analytic and geometric problems in metric spaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信