On the Regularity of Alexandrov Surfaces with Curvature Bounded Below

Pub Date : 2016-11-10 DOI:10.1515/agms-2016-0012
L. Ambrosio, J. Bertrand
{"title":"On the Regularity of Alexandrov Surfaces with Curvature Bounded Below","authors":"L. Ambrosio, J. Bertrand","doi":"10.1515/agms-2016-0012","DOIUrl":null,"url":null,"abstract":"Abstract In this note, we prove that on a surface with Alexandrov’s curvature bounded below, the distance derives from a Riemannian metric whose components, for any p ∈ [1, 2), locally belong to W1,p out of a discrete singular set. This result is based on Reshetnyak’s work on the more general class of surfaces with bounded integral curvature.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/agms-2016-0012","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2016-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Abstract In this note, we prove that on a surface with Alexandrov’s curvature bounded below, the distance derives from a Riemannian metric whose components, for any p ∈ [1, 2), locally belong to W1,p out of a discrete singular set. This result is based on Reshetnyak’s work on the more general class of surfaces with bounded integral curvature.
分享
查看原文
曲率有界的Alexandrov曲面的正则性
摘要本文证明了在Alexandrov曲率有界的曲面上,距离来源于一个黎曼度规,对于任意p∈[1,2],黎曼度规的分量局部属于离散奇异集中的W1,p。这个结果是基于Reshetnyak在更一般的曲面上的工作,这些曲面具有有界的积分曲率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信