Fast inference methods for high-dimensional factor copulas

IF 0.6 Q4 STATISTICS & PROBABILITY
Alex Verhoijsen, Pavel Krupskiy
{"title":"Fast inference methods for high-dimensional factor copulas","authors":"Alex Verhoijsen, Pavel Krupskiy","doi":"10.1515/demo-2022-0117","DOIUrl":null,"url":null,"abstract":"Abstract Gaussian factor models allow the statistician to capture multivariate dependence between variables. However, they are computationally cumbersome in high dimensions and are not able to capture multivariate skewness in the data. We propose a copula model that allows for arbitrary margins, and multivariate skewness in the data by including a non-Gaussian factor whose dependence structure is the result of a one-factor copula model. Estimation is carried out using a two-step procedure: margins are modelled separately and transformed to the normal scale, after which the dependence structure is estimated. We develop an estimation procedure that allows for fast estimation of the model parameters in a high-dimensional setting. We first prove the theoretical results of the model with up to three Gaussian factors. Then, simulation results confirm that the model works as the sample size and dimensionality grow larger. Finally, we apply the model to a selection of stocks of the S&P500, which demonstrates that our model is able to capture cross-sectional skewness in the stock market data.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"10 1","pages":"270 - 289"},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2022-0117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Gaussian factor models allow the statistician to capture multivariate dependence between variables. However, they are computationally cumbersome in high dimensions and are not able to capture multivariate skewness in the data. We propose a copula model that allows for arbitrary margins, and multivariate skewness in the data by including a non-Gaussian factor whose dependence structure is the result of a one-factor copula model. Estimation is carried out using a two-step procedure: margins are modelled separately and transformed to the normal scale, after which the dependence structure is estimated. We develop an estimation procedure that allows for fast estimation of the model parameters in a high-dimensional setting. We first prove the theoretical results of the model with up to three Gaussian factors. Then, simulation results confirm that the model works as the sample size and dimensionality grow larger. Finally, we apply the model to a selection of stocks of the S&P500, which demonstrates that our model is able to capture cross-sectional skewness in the stock market data.
高维因子copula的快速推理方法
摘要高斯因子模型允许统计学家捕捉变量之间的多变量相关性。然而,它们在高维计算上很麻烦,并且不能捕获数据中的多元偏度。我们提出了一个允许任意边界和数据多变量偏态的联结模型,通过包含非高斯因子,其依赖结构是单因子联结模型的结果。估计使用两步程序进行:分别对边缘进行建模并转换为正态尺度,之后估计依赖结构。我们开发了一种估计程序,允许在高维设置中快速估计模型参数。我们首先用最多三个高斯因子证明了模型的理论结果。仿真结果表明,随着样本量和维数的增大,该模型是有效的。最后,我们将模型应用于标准普尔500指数的股票选择,这表明我们的模型能够捕获股票市场数据的横截面偏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Dependence Modeling
Dependence Modeling STATISTICS & PROBABILITY-
CiteScore
1.00
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊介绍: The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to):  -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信