Ilson C. A. da Silveira, P. S. Bernardo, C. Z. Lazaneo, João P. M. Amorim, Milton Borges-Silva, R. C. Martins, Daniel M. C. Santos, M. Dottori, Wellington C. Belo, R. Martins, L. A. A. Guerra, Daniel L. Moreira
{"title":"Oceanographic conditions of the continental slope and deep waters in Santos Basin: the SANSED cruise (winter 2019)","authors":"Ilson C. A. da Silveira, P. S. Bernardo, C. Z. Lazaneo, João P. M. Amorim, Milton Borges-Silva, R. C. Martins, Daniel M. C. Santos, M. Dottori, Wellington C. Belo, R. Martins, L. A. A. Guerra, Daniel L. Moreira","doi":"10.1590/2675-2824071.2206icas","DOIUrl":null,"url":null,"abstract":"This work describes the circulation over the continental slope and the São Paulo Plateau in the Santos Basin during the SANSED winter 2019 survey. The cruise consisted of four legs in the period between June, 11 and August, 03 2019. The observed circulation is dominated by the Atlantic southwestern boundary current regime and remotely-generated anticyclones and cyclones. The former is composed by the Brazil Current, the Intermediate Western Boundary Current and their mesoscale meanders; the latter are 300km vortical rings with origin in the eastern side of the South Atlantic Basin. A Lagrangian scheme applied over satellite altimeter maps indicate that the origin of these rings is primarily the Cape Basin off South Africa. The interaction between the boundary currents, their cyclonic meanders, and the anticyclonic rings is complex, and varies widely. During the SANSED winter 2019 survey period, three anticyclones interacted with the Brazil Current, instabilizing it, forming dipoles with the current cyclonic meanders, leading to their downstream propagation. Ancienter cyclonic eddies within Santos Basin may interfere with the propagation of the large anticyclones further south. In addition, the continuous arrival of remotely-originated anticyclones, the larger portion over the São Paulo Plateau presented a tendency of counter-clockwise circulation during the whole cruise period.","PeriodicalId":19418,"journal":{"name":"Ocean and Coastal Research","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean and Coastal Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1590/2675-2824071.2206icas","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 6
Abstract
This work describes the circulation over the continental slope and the São Paulo Plateau in the Santos Basin during the SANSED winter 2019 survey. The cruise consisted of four legs in the period between June, 11 and August, 03 2019. The observed circulation is dominated by the Atlantic southwestern boundary current regime and remotely-generated anticyclones and cyclones. The former is composed by the Brazil Current, the Intermediate Western Boundary Current and their mesoscale meanders; the latter are 300km vortical rings with origin in the eastern side of the South Atlantic Basin. A Lagrangian scheme applied over satellite altimeter maps indicate that the origin of these rings is primarily the Cape Basin off South Africa. The interaction between the boundary currents, their cyclonic meanders, and the anticyclonic rings is complex, and varies widely. During the SANSED winter 2019 survey period, three anticyclones interacted with the Brazil Current, instabilizing it, forming dipoles with the current cyclonic meanders, leading to their downstream propagation. Ancienter cyclonic eddies within Santos Basin may interfere with the propagation of the large anticyclones further south. In addition, the continuous arrival of remotely-originated anticyclones, the larger portion over the São Paulo Plateau presented a tendency of counter-clockwise circulation during the whole cruise period.