Сonsideration of the signal attenuation in double-frequency sensing for rain intensity retrieval

A. Linkova
{"title":"Сonsideration of the signal attenuation in double-frequency sensing for rain intensity retrieval","authors":"A. Linkova","doi":"10.15407/rej2021.03.003","DOIUrl":null,"url":null,"abstract":"Subject and Purpose. Precipitation is the main source of agricultural land moisture. The knowledge of its amount, especially during the growing season, is important information to justify necessary agronomic and land reclamation measures. The purpose of this work is to solve by regularization the inverse problem of double-frequency sensing of precipitation in the microwave range with the signal attenuation considered and analyze the influence of radar cross-section (RCS) calculation errors and the total signal attenuation measuring precision on the rain intensity retrieval results. Methods and Methodology. Numerical simulation is used in double frequency retrievals to solve the integral scattering equation by regularization methods. Results. Numerical simulation has been performed for the rain intensity retrieval with a uniform spatial profile of rain intensity in the range 1…20 mm/h. Direct and inverse iterative procedures were used for having the signal attenuation at 0.82 and 3.2 cm operating wavelengths. It has been shown that the direct iterative procedure is less effective than the inverse one. Thus, when the rain intensity exceeds 20 mm/h or when it is within 10…20 mm/h and a rain spatial extent goes over 500 m, the direct iteration scheme causes significant errors in the rain intensity retrieval. Conclusion. The analysis of the results has shown that the use of the inverse iterative procedure makes it possible to retrieve a uniform-profile rain intensity with a 25 % error for rains with a 20 mm/h intensity and a 4 km spatial extent and ± 20 % errors in the total signal attenuation and specific RCS calculated.","PeriodicalId":52841,"journal":{"name":"Radiofizika i elektronika","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiofizika i elektronika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/rej2021.03.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Subject and Purpose. Precipitation is the main source of agricultural land moisture. The knowledge of its amount, especially during the growing season, is important information to justify necessary agronomic and land reclamation measures. The purpose of this work is to solve by regularization the inverse problem of double-frequency sensing of precipitation in the microwave range with the signal attenuation considered and analyze the influence of radar cross-section (RCS) calculation errors and the total signal attenuation measuring precision on the rain intensity retrieval results. Methods and Methodology. Numerical simulation is used in double frequency retrievals to solve the integral scattering equation by regularization methods. Results. Numerical simulation has been performed for the rain intensity retrieval with a uniform spatial profile of rain intensity in the range 1…20 mm/h. Direct and inverse iterative procedures were used for having the signal attenuation at 0.82 and 3.2 cm operating wavelengths. It has been shown that the direct iterative procedure is less effective than the inverse one. Thus, when the rain intensity exceeds 20 mm/h or when it is within 10…20 mm/h and a rain spatial extent goes over 500 m, the direct iteration scheme causes significant errors in the rain intensity retrieval. Conclusion. The analysis of the results has shown that the use of the inverse iterative procedure makes it possible to retrieve a uniform-profile rain intensity with a 25 % error for rains with a 20 mm/h intensity and a 4 km spatial extent and ± 20 % errors in the total signal attenuation and specific RCS calculated.
在雨强检索的双频传感信号衰减Сonsideration
主题和目的。降水是农业用地水分的主要来源。了解其数量,特别是在生长季节,是证明必要的农艺和土地复垦措施合理性的重要资料。本文的目的是通过正则化方法解决微波范围内考虑信号衰减的双频降水反演问题,并分析雷达截面(RCS)计算误差和总信号衰减测量精度对雨强反演结果的影响。方法和方法论。在双频反演中采用数值模拟方法,用正则化方法求解积分散射方程。结果。在1 ~ 20 mm/h的均匀雨强空间剖面下,对雨强反演进行了数值模拟。在0.82 cm和3.2 cm工作波长处,采用直接迭代法和逆迭代法计算信号衰减。结果表明,直接迭代法比逆迭代法的效率要低。因此,当降雨强度超过20 mm/h或在10 ~ 20 mm/h范围内,降雨空间范围超过500 m时,直接迭代方案对雨强的反演误差较大。结论。结果分析表明,对于强度为20 mm/h、空间范围为4 km的降雨,使用逆迭代方法可以获得均匀分布的雨强,误差为25%,计算的总信号衰减和比RCS误差为±20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信