On some behavioral peculiarities of magneic type eigenmodes of a spherical particle with arbitrarily valued material parameters

Yu. V. Svishchov
{"title":"On some behavioral peculiarities of magneic type eigenmodes of a spherical particle with arbitrarily valued material parameters","authors":"Yu. V. Svishchov","doi":"10.15407/rej2020.04.003","DOIUrl":null,"url":null,"abstract":"Subject and Purpose. The spectral characteristics (eigenfrequencies, eigenmodes, Q-factors) of a spherical particle with arbitrarily valued permittivity and permeability are considered to take a further look into some important features of their behavior. The real and imaginary parts of the material parameters of the particle can be both positive and negative. The emphasis is on magnetic type modes. Methods and Methodology. The spectral problem is solved using the electromagnetic field expansion in vector spherical wave functions. Results. The first eigenfrequencies of a spherical particle have been calculated depending on its relative permittivity e 1 and relative permeability m 1 whose real and imaginary parts can take both positive and negative values. The eigenmodes split into two, internal and external, eigenmode families. The internal eigenmodes bear an independent, associated with eigenmode structure labeling in each quadrant of the plane (m 1 , e 1). The external eigenmodes, on the contrary, have a uniform labeling throughout the whole (m 1 , e 1) plane and bear a structural resemblance to surface plasmon oscillations distributed in the vicinity of the particle surface or outside it. In the first quadrant of the plane (m 1 , e 1), the external eigenmodes repeatedly interact with the internal eigenmodes, leading to either mode hybridization or mode type exchange. In the third quadrant of the plane (m 1 , e 1), the external eigenmodes can interact with one another. The anomalous behavior of the spectral characteristics of a spherical particle corresponds to the already known phenomenon of wave mode coupling described in the scientific literature well enough. Conclusion. The performed study has revealed some new behavioral patterns as to the spectral characteristics of a spherical particle with arbitrarily valued permittivity and permeability","PeriodicalId":52841,"journal":{"name":"Radiofizika i elektronika","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiofizika i elektronika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/rej2020.04.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Subject and Purpose. The spectral characteristics (eigenfrequencies, eigenmodes, Q-factors) of a spherical particle with arbitrarily valued permittivity and permeability are considered to take a further look into some important features of their behavior. The real and imaginary parts of the material parameters of the particle can be both positive and negative. The emphasis is on magnetic type modes. Methods and Methodology. The spectral problem is solved using the electromagnetic field expansion in vector spherical wave functions. Results. The first eigenfrequencies of a spherical particle have been calculated depending on its relative permittivity e 1 and relative permeability m 1 whose real and imaginary parts can take both positive and negative values. The eigenmodes split into two, internal and external, eigenmode families. The internal eigenmodes bear an independent, associated with eigenmode structure labeling in each quadrant of the plane (m 1 , e 1). The external eigenmodes, on the contrary, have a uniform labeling throughout the whole (m 1 , e 1) plane and bear a structural resemblance to surface plasmon oscillations distributed in the vicinity of the particle surface or outside it. In the first quadrant of the plane (m 1 , e 1), the external eigenmodes repeatedly interact with the internal eigenmodes, leading to either mode hybridization or mode type exchange. In the third quadrant of the plane (m 1 , e 1), the external eigenmodes can interact with one another. The anomalous behavior of the spectral characteristics of a spherical particle corresponds to the already known phenomenon of wave mode coupling described in the scientific literature well enough. Conclusion. The performed study has revealed some new behavioral patterns as to the spectral characteristics of a spherical particle with arbitrarily valued permittivity and permeability
材料参数为任意值的球形粒子磁性本征模的一些行为特性
主题和目的。考虑具有任意介电常数和磁导率的球形粒子的谱特性(本征频率,本征模态,q因子)以进一步研究其行为的一些重要特征。粒子材料参数的实部和虚部可以是正的,也可以是负的。重点是磁型模式。方法和方法论。利用电磁场在矢量球面波函数中的展开来解决谱问题。结果。根据球形粒子的相对介电常数e1和相对磁导率m1计算了其第一特征频率,其实部和虚部可以取正值和负值。特征模态分为两个,内部和外部特征模态族。内部本征模在平面的每个象限(m1, e1)具有独立的、与本征模结构相关的标记。相反,外部本征模在整个(m1, e1)平面上具有均匀的标记,并且具有与分布在粒子表面附近或外部的表面等离子激元振荡相似的结构。在平面的第一象限(m1, e1),外部本征模与内部本征模反复相互作用,导致模式杂交或模式类型交换。在平面的第三象限(m1, e1),外部特征模可以相互作用。球形粒子的光谱特征的反常行为与科学文献中描述的已知的波模耦合现象相对应。结论。本研究揭示了具有任意介电常数和磁导率的球形粒子的光谱特性的一些新的行为模式
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信