Integrable Multi-Hamiltonian Systems from Reduction of an Extended Quasi-Poisson Double of \({\text {U}}(n)\)

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
M. Fairon, L. Fehér
{"title":"Integrable Multi-Hamiltonian Systems from Reduction of an Extended Quasi-Poisson Double of \\({\\text {U}}(n)\\)","authors":"M. Fairon,&nbsp;L. Fehér","doi":"10.1007/s00023-023-01344-8","DOIUrl":null,"url":null,"abstract":"<div><p>We construct a master dynamical system on a <span>\\({\\text {U}}(n)\\)</span> quasi-Poisson manifold, <span>\\({\\mathcal {M}}_d\\)</span>, built from the double <span>\\({\\text {U}}(n) \\times {\\text {U}}(n)\\)</span> and <span>\\(d\\ge 2\\)</span> open balls in <span>\\(\\mathbb {C}^n\\)</span>, whose quasi-Poisson structures are obtained from <span>\\(T^* \\mathbb {R}^n\\)</span> by exponentiation. A pencil of quasi-Poisson bivectors <span>\\(P_{\\underline{z}}\\)</span> is defined on <span>\\({\\mathcal {M}}_d\\)</span> that depends on <span>\\(d(d-1)/2\\)</span> arbitrary real parameters and gives rise to pairwise compatible Poisson brackets on the <span>\\({\\text {U}}(n)\\)</span>-invariant functions. The master system on <span>\\({\\mathcal {M}}_d\\)</span> is a quasi-Poisson analogue of the degenerate integrable system of free motion on the extended cotangent bundle <span>\\(T^*\\!{\\text {U}}(n) \\times \\mathbb {C}^{n\\times d}\\)</span>. Its commuting Hamiltonians are pullbacks of the class functions on one of the <span>\\({\\text {U}}(n)\\)</span> factors. We prove that the master system descends to a degenerate integrable system on a dense open subset of the smooth component of the quotient space <span>\\({\\mathcal {M}}_d/{\\text {U}}(n)\\)</span> associated with the principal orbit type. Any reduced Hamiltonian arising from a class function generates the same flow via any of the compatible Poisson structures stemming from the bivectors <span>\\(P_{\\underline{z}}\\)</span>. The restrictions of the reduced system on minimal symplectic leaves parameterized by generic elements of the center of <span>\\({\\text {U}}(n)\\)</span> provide a new real form of the complex, trigonometric spin Ruijsenaars–Schneider model of Krichever and Zabrodin. This generalizes the derivation of the compactified trigonometric RS model found previously in the <span>\\(d=1\\)</span> case.</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"24 10","pages":"3461 - 3529"},"PeriodicalIF":1.4000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00023-023-01344-8.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-023-01344-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 1

Abstract

We construct a master dynamical system on a \({\text {U}}(n)\) quasi-Poisson manifold, \({\mathcal {M}}_d\), built from the double \({\text {U}}(n) \times {\text {U}}(n)\) and \(d\ge 2\) open balls in \(\mathbb {C}^n\), whose quasi-Poisson structures are obtained from \(T^* \mathbb {R}^n\) by exponentiation. A pencil of quasi-Poisson bivectors \(P_{\underline{z}}\) is defined on \({\mathcal {M}}_d\) that depends on \(d(d-1)/2\) arbitrary real parameters and gives rise to pairwise compatible Poisson brackets on the \({\text {U}}(n)\)-invariant functions. The master system on \({\mathcal {M}}_d\) is a quasi-Poisson analogue of the degenerate integrable system of free motion on the extended cotangent bundle \(T^*\!{\text {U}}(n) \times \mathbb {C}^{n\times d}\). Its commuting Hamiltonians are pullbacks of the class functions on one of the \({\text {U}}(n)\) factors. We prove that the master system descends to a degenerate integrable system on a dense open subset of the smooth component of the quotient space \({\mathcal {M}}_d/{\text {U}}(n)\) associated with the principal orbit type. Any reduced Hamiltonian arising from a class function generates the same flow via any of the compatible Poisson structures stemming from the bivectors \(P_{\underline{z}}\). The restrictions of the reduced system on minimal symplectic leaves parameterized by generic elements of the center of \({\text {U}}(n)\) provide a new real form of the complex, trigonometric spin Ruijsenaars–Schneider model of Krichever and Zabrodin. This generalizes the derivation of the compactified trigonometric RS model found previously in the \(d=1\) case.

Abstract Image

的扩展拟泊松二重的可积多哈密顿系统的约化 \({\text {U}}(n)\)
我们在\({\text {U}}(n)\)准泊松流形\({\mathcal {M}}_d\)上构造了一个主动力系统,该系统由\(\mathbb {C}^n\)中的双\({\text {U}}(n) \times {\text {U}}(n)\)和\(d\ge 2\)开球构造而成,其准泊松结构由\(T^* \mathbb {R}^n\)通过幂求得到。在\({\mathcal {M}}_d\)上定义了一组拟泊松双向量\(P_{\underline{z}}\),它依赖于\(d(d-1)/2\)任意实参数,并在\({\text {U}}(n)\)不变函数上产生成对兼容泊松括号。\({\mathcal {M}}_d\)上的主系统是扩展余切束\(T^*\!{\text {U}}(n) \times \mathbb {C}^{n\times d}\)上自由运动的退化可积系统的准泊松模拟。它的通勤哈密顿量是类函数对\({\text {U}}(n)\)因子之一的回调。我们证明了主系统在与主轨道类型相关的商空间\({\mathcal {M}}_d/{\text {U}}(n)\)的光滑分量的稠密开子集上下降到退化可积系统。由类函数产生的任何简化的哈密顿量通过任何由双向量产生的兼容泊松结构\(P_{\underline{z}}\)产生相同的流。由\({\text {U}}(n)\)中心的一般元素参数化的最小辛叶上的约简系统的限制为krichhever和Zabrodin的复杂三角自旋rujsenaars - schneider模型提供了一种新的真实形式。这推广了之前在\(d=1\)案例中发现的紧化三角RS模型的推导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信