V. Verkhovtsev, O.G. Musich, Yu.O. Fomin, Y. Demikhov
{"title":"BACTERIAL LEACHING OF BALANCED ORES OF ALBITITE DEPOSITS OF THE UKRAINIAN SHIELD","authors":"V. Verkhovtsev, O.G. Musich, Yu.O. Fomin, Y. Demikhov","doi":"10.15407/mineraljournal.45.01.072","DOIUrl":null,"url":null,"abstract":"Prospects for increasing the raw materials resources of uranium ore deposits of the albite formation of the Ingul megablock of the Ukrainian Shield and the possibility of reducing the impact of harmful waste due to the method of bacterial leaching of metals were considered. Mineral-forming systems of uranium-bearing albitites of the Ukrainian Shield have always been considered as monoelement, exclusively uranium objects. However, their out-of-balance ores and tailings contain elevated, up to industrial, concentrations of other metals, which, under conditions of hypergenic processes, pose a potential threat of environmental pollution. In order to determine the possibility of expanding raw materials resources of albite deposits of the Ukrainian Shield due to the use of the method of bacterial leaching of metals, the composition of industrial ores and host rocks was considered. In particular, our data from their mineralogical and geochemical research showed that uranium and five of its companion elements: thorium, vanadium, beryllium, zirconium and lead reach industrial content. At the same time, cobalt, nickel and zinc are characterized by an increased content close to the minimum industrial values. The most promising for bacterial leaching are rocks that contain sulfides. The rocks of the uranium ore albitite formation contain sulfur-containing compounds and, in particular, pyrite, as well as bi- and trivalent iron. We found the highest content of sulfides in albitized rocks (up to 0.82%), ore-free albitites (up to 0.81%), low-ore albitites (up to 0.61%), that is, in rocks accumulated in industrial waste. It is assumed that the use of bacterial leaching methods with the participation of chemolithotrophic microorganisms can be promising for the processing of off-balance ores and will contribute to the expansion of the raw material base of albite deposits of the Ukrainian Shield, due not only to uranium, but also to nickel, cobalt and zinc.","PeriodicalId":53834,"journal":{"name":"Mineralogical Journal-Ukraine","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralogical Journal-Ukraine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/mineraljournal.45.01.072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MINERALOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Prospects for increasing the raw materials resources of uranium ore deposits of the albite formation of the Ingul megablock of the Ukrainian Shield and the possibility of reducing the impact of harmful waste due to the method of bacterial leaching of metals were considered. Mineral-forming systems of uranium-bearing albitites of the Ukrainian Shield have always been considered as monoelement, exclusively uranium objects. However, their out-of-balance ores and tailings contain elevated, up to industrial, concentrations of other metals, which, under conditions of hypergenic processes, pose a potential threat of environmental pollution. In order to determine the possibility of expanding raw materials resources of albite deposits of the Ukrainian Shield due to the use of the method of bacterial leaching of metals, the composition of industrial ores and host rocks was considered. In particular, our data from their mineralogical and geochemical research showed that uranium and five of its companion elements: thorium, vanadium, beryllium, zirconium and lead reach industrial content. At the same time, cobalt, nickel and zinc are characterized by an increased content close to the minimum industrial values. The most promising for bacterial leaching are rocks that contain sulfides. The rocks of the uranium ore albitite formation contain sulfur-containing compounds and, in particular, pyrite, as well as bi- and trivalent iron. We found the highest content of sulfides in albitized rocks (up to 0.82%), ore-free albitites (up to 0.81%), low-ore albitites (up to 0.61%), that is, in rocks accumulated in industrial waste. It is assumed that the use of bacterial leaching methods with the participation of chemolithotrophic microorganisms can be promising for the processing of off-balance ores and will contribute to the expansion of the raw material base of albite deposits of the Ukrainian Shield, due not only to uranium, but also to nickel, cobalt and zinc.