Isam Abu-Qasmieh, I. Masad, Hiam Alquran, Khaled Z. Alawneh
{"title":"Generation of synthetic FLAIR MRI image from real CT image for accurate synovial fluid segmentation in human knee image","authors":"Isam Abu-Qasmieh, I. Masad, Hiam Alquran, Khaled Z. Alawneh","doi":"10.14311/nnw.2023.33.012","DOIUrl":null,"url":null,"abstract":"Synthetic MRI FLAIR images of an abdominal 3D multimodality phantom and in vivo human knee have been generated from real CT images using predefined mapping functions of CT mean and standard deviation with the corresponding proton density PD, T1 and T2 that were previously generated from spin-echo sequence. First, the validity of generating synthetic MR images from different sequences were tested and the same PD, T1 and T2 maps that were generated from the real CT image have been used in the simulation of MRI inversion-recovery (IR) sequence. The similarity results between the real and synthetic IR sequence images, using different inversion times TI, showed a very good agreement. After confirming the feasibility of generating synthetic IR images from the PD, T1 and T2-maps, that were originally obtained from spin-echo sequence using the phantom, the simulation of a knee image has been generated from the corresponding knee CT real image using the steady-state transverse magnetization formula of the inversion-recovery sequence. The simulated FLAIR IR sequence MR image are generated using proper TI for nulling the signal from the synovial fluid, where the image complement is used as a mask for segmenting the corresponding tissue region in the real CT image.","PeriodicalId":49765,"journal":{"name":"Neural Network World","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Network World","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14311/nnw.2023.33.012","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Synthetic MRI FLAIR images of an abdominal 3D multimodality phantom and in vivo human knee have been generated from real CT images using predefined mapping functions of CT mean and standard deviation with the corresponding proton density PD, T1 and T2 that were previously generated from spin-echo sequence. First, the validity of generating synthetic MR images from different sequences were tested and the same PD, T1 and T2 maps that were generated from the real CT image have been used in the simulation of MRI inversion-recovery (IR) sequence. The similarity results between the real and synthetic IR sequence images, using different inversion times TI, showed a very good agreement. After confirming the feasibility of generating synthetic IR images from the PD, T1 and T2-maps, that were originally obtained from spin-echo sequence using the phantom, the simulation of a knee image has been generated from the corresponding knee CT real image using the steady-state transverse magnetization formula of the inversion-recovery sequence. The simulated FLAIR IR sequence MR image are generated using proper TI for nulling the signal from the synovial fluid, where the image complement is used as a mask for segmenting the corresponding tissue region in the real CT image.
期刊介绍:
Neural Network World is a bimonthly journal providing the latest developments in the field of informatics with attention mainly devoted to the problems of:
brain science,
theory and applications of neural networks (both artificial and natural),
fuzzy-neural systems,
methods and applications of evolutionary algorithms,
methods of parallel and mass-parallel computing,
problems of soft-computing,
methods of artificial intelligence.