Enhanced QOS energy-efficient routing algorithm using deep belief neural network in hybrid falcon-improved ACO nature-inspired optimization in wireless sensor networks
IF 0.7 4区 计算机科学Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
{"title":"Enhanced QOS energy-efficient routing algorithm using deep belief neural network in hybrid falcon-improved ACO nature-inspired optimization in wireless sensor networks","authors":"K. Krishna, Ramakrishna Thirumuru","doi":"10.14311/nnw.2023.33.008","DOIUrl":null,"url":null,"abstract":"Wireless sensor networks (WSNs) have recently acquired prominence in a variety of applications such as remote monitoring and tracking. Since it is virtually hard to recharge the nodes in their remote deployment, also, the transmission of data from nodes to the base station requires a significant amount of energy. Thus, our research proposes a routing protocol, namely hybrid falcon-improved ACO Nature-Inspired Optimization using a deep learning model to reduce energy consumption while increases the network lifetime. In the developed model, initially, the falcon optimization technique is utilized to locate the best possible cluster heads in the quickest possible time. Furthermore, to improve the quality of service in routing optimization a new improved ACO has been proposed in which linear flexible operator and the premier operator are used to increasing the iteration speed. Finally, the optimum route is obtained through DBNN based on predicted energy. As a result, our proposed model gives a lifetime as 121 s and energy consumption as 0.041 J at 500 rounds when compared to the baseline approaches. Therefore, our proposed approaches provides better routing and improves the QoS as well as the energy consumption which increases the longevity of mobile nodes.","PeriodicalId":49765,"journal":{"name":"Neural Network World","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Network World","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14311/nnw.2023.33.008","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Wireless sensor networks (WSNs) have recently acquired prominence in a variety of applications such as remote monitoring and tracking. Since it is virtually hard to recharge the nodes in their remote deployment, also, the transmission of data from nodes to the base station requires a significant amount of energy. Thus, our research proposes a routing protocol, namely hybrid falcon-improved ACO Nature-Inspired Optimization using a deep learning model to reduce energy consumption while increases the network lifetime. In the developed model, initially, the falcon optimization technique is utilized to locate the best possible cluster heads in the quickest possible time. Furthermore, to improve the quality of service in routing optimization a new improved ACO has been proposed in which linear flexible operator and the premier operator are used to increasing the iteration speed. Finally, the optimum route is obtained through DBNN based on predicted energy. As a result, our proposed model gives a lifetime as 121 s and energy consumption as 0.041 J at 500 rounds when compared to the baseline approaches. Therefore, our proposed approaches provides better routing and improves the QoS as well as the energy consumption which increases the longevity of mobile nodes.
期刊介绍:
Neural Network World is a bimonthly journal providing the latest developments in the field of informatics with attention mainly devoted to the problems of:
brain science,
theory and applications of neural networks (both artificial and natural),
fuzzy-neural systems,
methods and applications of evolutionary algorithms,
methods of parallel and mass-parallel computing,
problems of soft-computing,
methods of artificial intelligence.