A method for joint detection and re-identification in multi-object tracking

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Lilian Huang, XueQiang Shi, Jianhong Xiang
{"title":"A method for joint detection and re-identification in multi-object tracking","authors":"Lilian Huang, XueQiang Shi, Jianhong Xiang","doi":"10.14311/nnw.2022.32.017","DOIUrl":null,"url":null,"abstract":"In order to better balance the detection accuracy and tracking speed, we propose an online balanced multi-object tracking method (BalMOT), which integrates object detection and appearance extraction into a single network, and can simultaneously output detection and appearance embedding. We also model the training of classification, regression, and embedding features as a multi-task training problem and each part is weighted based on the task-independent uncertainty method. In addition, we introduce the transition layer to optimize the repeated gradient information in the network and reduce the training cost. Through the training, our BalMOT system reaches 71.9% multiple object tracking accuracy (MOTA) on the MOT17 challenge dataset, and the speed fluctuates between 17.4 ~ 22.3 frames per second (FPS) according to the size of the input image.","PeriodicalId":49765,"journal":{"name":"Neural Network World","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Network World","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14311/nnw.2022.32.017","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In order to better balance the detection accuracy and tracking speed, we propose an online balanced multi-object tracking method (BalMOT), which integrates object detection and appearance extraction into a single network, and can simultaneously output detection and appearance embedding. We also model the training of classification, regression, and embedding features as a multi-task training problem and each part is weighted based on the task-independent uncertainty method. In addition, we introduce the transition layer to optimize the repeated gradient information in the network and reduce the training cost. Through the training, our BalMOT system reaches 71.9% multiple object tracking accuracy (MOTA) on the MOT17 challenge dataset, and the speed fluctuates between 17.4 ~ 22.3 frames per second (FPS) according to the size of the input image.
多目标跟踪中的联合检测与再识别方法
为了更好地平衡检测精度和跟踪速度,我们提出了一种在线平衡多目标跟踪方法(BalMOT),该方法将目标检测和外观提取集成到一个网络中,可以同时输出检测和外观嵌入。我们还将分类、回归和嵌入特征的训练建模为一个多任务训练问题,并基于任务无关的不确定性方法对每个部分进行加权。此外,我们引入过渡层来优化网络中重复的梯度信息,降低训练成本。通过训练,我们的BalMOT系统在MOT17挑战数据集上达到了71.9%的多目标跟踪精度(MOTA),并且速度根据输入图像的大小在17.4 ~ 22.3帧/秒(FPS)之间波动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Network World
Neural Network World 工程技术-计算机:人工智能
CiteScore
1.80
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: Neural Network World is a bimonthly journal providing the latest developments in the field of informatics with attention mainly devoted to the problems of: brain science, theory and applications of neural networks (both artificial and natural), fuzzy-neural systems, methods and applications of evolutionary algorithms, methods of parallel and mass-parallel computing, problems of soft-computing, methods of artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信