Artificial neural network modelling of green synthesis of silver nanoparticles by honey

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yesim Yilmaz Abeska, Levent Çavaş
{"title":"Artificial neural network modelling of green synthesis of silver nanoparticles by honey","authors":"Yesim Yilmaz Abeska, Levent Çavaş","doi":"10.14311/nnw.2022.32.001","DOIUrl":null,"url":null,"abstract":"Nanomaterials draw attention because of their unique physical, chemical and biological properties in areas such as catalysis, electronic, optics, medicine, solar energy conversion and water treatment. Green synthesis of silver nanoparticles has many superiorities compared to physical and chemical methods such as lowcost, nontoxicity, eco-sensitive. In this paper, experimental conditions related togreen synthesis of silver nanoparticles by honey were modelled using artificial neural network (ANN). While agitation time, agitation rate, pH, temperature, honey concentration, AgNO3 concentration were selected as input parameters, production of silver nanoparticles was used as an output parameter. According to the results, optimum hidden neuron number was found as 40 with Levenberg–Marquardt back-propagation algorithm. In this conditions, the percentages of training, validationand testing were 75, 20 and 5, respectively. After creating neural network separated input data set was applied and then experimental and ANN predicted data were compared. In conclusion, ANN can be an alternative modelling and robust approach that could help researchers in this field to estimate production of silver nanoparticles.","PeriodicalId":49765,"journal":{"name":"Neural Network World","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Network World","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14311/nnw.2022.32.001","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Nanomaterials draw attention because of their unique physical, chemical and biological properties in areas such as catalysis, electronic, optics, medicine, solar energy conversion and water treatment. Green synthesis of silver nanoparticles has many superiorities compared to physical and chemical methods such as lowcost, nontoxicity, eco-sensitive. In this paper, experimental conditions related togreen synthesis of silver nanoparticles by honey were modelled using artificial neural network (ANN). While agitation time, agitation rate, pH, temperature, honey concentration, AgNO3 concentration were selected as input parameters, production of silver nanoparticles was used as an output parameter. According to the results, optimum hidden neuron number was found as 40 with Levenberg–Marquardt back-propagation algorithm. In this conditions, the percentages of training, validationand testing were 75, 20 and 5, respectively. After creating neural network separated input data set was applied and then experimental and ANN predicted data were compared. In conclusion, ANN can be an alternative modelling and robust approach that could help researchers in this field to estimate production of silver nanoparticles.
蜂蜜绿色合成纳米银的人工神经网络建模
纳米材料以其独特的物理、化学和生物特性在催化、电子、光学、医学、太阳能转换和水处理等领域受到广泛关注。与物理化学方法相比,绿色合成纳米银具有成本低、无毒、生态敏感等优点。本文利用人工神经网络(ANN)对蜂蜜绿色合成纳米银的实验条件进行了建模。以搅拌时间、搅拌速率、pH、温度、蜂蜜浓度、AgNO3浓度为输入参数,以纳米银的产量为输出参数。结果表明,Levenberg - Marquardt反向传播算法的最优隐藏神经元数为40。在这种情况下,训练、验证和测试的百分比分别为75%、20%和5%。在建立神经网络后,应用分离的输入数据集,并将实验数据与人工神经网络预测数据进行比较。总之,人工神经网络可以是一种替代的建模和稳健的方法,可以帮助该领域的研究人员估计纳米银的产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Network World
Neural Network World 工程技术-计算机:人工智能
CiteScore
1.80
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: Neural Network World is a bimonthly journal providing the latest developments in the field of informatics with attention mainly devoted to the problems of: brain science, theory and applications of neural networks (both artificial and natural), fuzzy-neural systems, methods and applications of evolutionary algorithms, methods of parallel and mass-parallel computing, problems of soft-computing, methods of artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信