{"title":"ECG signal classification based on adaptive multi-channel weighted neural network","authors":"Fengjuan Qiao, Bin Li, Mengqi Gao, Jiang Li","doi":"10.14311/nnw.2022.32.004","DOIUrl":null,"url":null,"abstract":"The intelligent diagnosis of cardiovascular diseases is a topic of great interest. Many electrocardiogram (ECG) recognition technologies have emerged, but most of them have low recognition accuracy and poor clinical application. To improve the accuracy of ECG classification, this paper proposes a multi-channel neural network framework. Concretely, a multi-channel feature extractor is constructed by using four types of filters, which are weighted according to their importance, as measured by kurtosis. A bidirectional long short-term memory (BLSTM) network structure based on attention mechanism is constructed, and the extracted features are taken as the input of the network, and the algorithm is optimized by attention mechanism. An experiment conducted on the MIT-BIH arrhythmia database shows that the proposed algorithm obtains excellent results, with 99.20 % specificity, 99.87 % sensitivity, and 99.89 % accuracy. Therefore, the algorithm is practical and effective in the clinical diagnosis of cardiovascular diseases.","PeriodicalId":49765,"journal":{"name":"Neural Network World","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Network World","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14311/nnw.2022.32.004","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2
Abstract
The intelligent diagnosis of cardiovascular diseases is a topic of great interest. Many electrocardiogram (ECG) recognition technologies have emerged, but most of them have low recognition accuracy and poor clinical application. To improve the accuracy of ECG classification, this paper proposes a multi-channel neural network framework. Concretely, a multi-channel feature extractor is constructed by using four types of filters, which are weighted according to their importance, as measured by kurtosis. A bidirectional long short-term memory (BLSTM) network structure based on attention mechanism is constructed, and the extracted features are taken as the input of the network, and the algorithm is optimized by attention mechanism. An experiment conducted on the MIT-BIH arrhythmia database shows that the proposed algorithm obtains excellent results, with 99.20 % specificity, 99.87 % sensitivity, and 99.89 % accuracy. Therefore, the algorithm is practical and effective in the clinical diagnosis of cardiovascular diseases.
期刊介绍:
Neural Network World is a bimonthly journal providing the latest developments in the field of informatics with attention mainly devoted to the problems of:
brain science,
theory and applications of neural networks (both artificial and natural),
fuzzy-neural systems,
methods and applications of evolutionary algorithms,
methods of parallel and mass-parallel computing,
problems of soft-computing,
methods of artificial intelligence.