On the analysis of discrete data finding dependencies in small sample sizes

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
S. Jozová, M. Matowicki, O. Přibyl, M. Zachová, Sathaporn Opasanon, R. Ziółkowski
{"title":"On the analysis of discrete data finding dependencies in small sample sizes","authors":"S. Jozová, M. Matowicki, O. Přibyl, M. Zachová, Sathaporn Opasanon, R. Ziółkowski","doi":"10.14311/nnw.2021.31.017","DOIUrl":null,"url":null,"abstract":"An analysis of survey data is a fundamental part of research concerning various aspects of human behavior. Such survey data are often discrete, and the size of the collected sample is regularly insufficient for the most potent modelling tools such as logistic regression, clustering, and other data mining techniques. In this paper, we take a closer look at the results of the stated preference survey analyzing how inhabitants of cities in Thailand, Poland, and Czechia understand and perceive “smartness” of a city. An international survey was conducted, where respondents were asked 15 questions. Since the most common data modelling tools failed to provide a useful insight into the relationship between variables, so-called lambda coefficient was used and its usefulness for such challenging data was verified. It uses the principle of conditional probability and proves to be truly useful even in data sets with relatively small sample size.","PeriodicalId":49765,"journal":{"name":"Neural Network World","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Network World","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14311/nnw.2021.31.017","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2

Abstract

An analysis of survey data is a fundamental part of research concerning various aspects of human behavior. Such survey data are often discrete, and the size of the collected sample is regularly insufficient for the most potent modelling tools such as logistic regression, clustering, and other data mining techniques. In this paper, we take a closer look at the results of the stated preference survey analyzing how inhabitants of cities in Thailand, Poland, and Czechia understand and perceive “smartness” of a city. An international survey was conducted, where respondents were asked 15 questions. Since the most common data modelling tools failed to provide a useful insight into the relationship between variables, so-called lambda coefficient was used and its usefulness for such challenging data was verified. It uses the principle of conditional probability and proves to be truly useful even in data sets with relatively small sample size.
在小样本量的离散数据分析中寻找相关性
对调查数据的分析是研究人类行为各个方面的基本部分。这样的调查数据通常是离散的,并且收集的样本的大小通常不足以用于最有效的建模工具,如逻辑回归、聚类和其他数据挖掘技术。在本文中,我们仔细研究了泰国、波兰和捷克的城市居民如何理解和感知城市的“智慧”的陈述偏好调查结果。这是一项国际调查,受访者被问及15个问题。由于最常见的数据建模工具无法对变量之间的关系提供有用的见解,因此使用了所谓的lambda系数,并验证了它对此类具有挑战性的数据的有用性。它使用条件概率原理,即使在相对较小的样本量的数据集中也被证明是非常有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Network World
Neural Network World 工程技术-计算机:人工智能
CiteScore
1.80
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: Neural Network World is a bimonthly journal providing the latest developments in the field of informatics with attention mainly devoted to the problems of: brain science, theory and applications of neural networks (both artificial and natural), fuzzy-neural systems, methods and applications of evolutionary algorithms, methods of parallel and mass-parallel computing, problems of soft-computing, methods of artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信