{"title":"Unsupervised facial expression detection using genetic algorithm","authors":"Rahool Dembani, Wang Zheng, Meijun Sun, Nooruddin","doi":"10.14311/nnw.2020.30.005","DOIUrl":null,"url":null,"abstract":"Interpersonal communication can be done by understanding the clues of facial expressions. As its importance increase in behavior and clinical studies, so automatic detection of facial expressions is an open research area for the last few decades. Efforts of expression detection by a human being are easy and effective but the machine needs some more understanding. This paper proposes a face expression clustering using a genetic algorithm. Image get convert into binary format for finding the related cluster selection in different phases of genetic algorithm. Proposed work has utilized a modified teacher learning-based optimization algorithm where the population gets updated in each phase to get the best representative features. A real dataset of facial expression was used in this work. A comparison of the proposed model was done with existing models on different evaluation parameters. It was obtained that the proposed work has improved precision, recall, the accuracy of facial expression identification without any training.","PeriodicalId":49765,"journal":{"name":"Neural Network World","volume":"30 1","pages":"65-75"},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Network World","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14311/nnw.2020.30.005","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2
Abstract
Interpersonal communication can be done by understanding the clues of facial expressions. As its importance increase in behavior and clinical studies, so automatic detection of facial expressions is an open research area for the last few decades. Efforts of expression detection by a human being are easy and effective but the machine needs some more understanding. This paper proposes a face expression clustering using a genetic algorithm. Image get convert into binary format for finding the related cluster selection in different phases of genetic algorithm. Proposed work has utilized a modified teacher learning-based optimization algorithm where the population gets updated in each phase to get the best representative features. A real dataset of facial expression was used in this work. A comparison of the proposed model was done with existing models on different evaluation parameters. It was obtained that the proposed work has improved precision, recall, the accuracy of facial expression identification without any training.
期刊介绍:
Neural Network World is a bimonthly journal providing the latest developments in the field of informatics with attention mainly devoted to the problems of:
brain science,
theory and applications of neural networks (both artificial and natural),
fuzzy-neural systems,
methods and applications of evolutionary algorithms,
methods of parallel and mass-parallel computing,
problems of soft-computing,
methods of artificial intelligence.