Efficient natural language classification algorithm for detecting duplicate unsupervised features

IF 1.9 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
S. Altaf, Sofia Iqbal, M. Soomro
{"title":"Efficient natural language classification algorithm for detecting duplicate unsupervised features","authors":"S. Altaf, Sofia Iqbal, M. Soomro","doi":"10.15622/IA.2021.3.5","DOIUrl":null,"url":null,"abstract":"This paper focuses on capturing the meaning of Natural Language Understanding (NLU) text features to detect the duplicate unsupervised features. The NLU features are compared with lexical approaches to prove the suitable classification technique. The transfer-learning approach is utilized to train the extraction of features on the Semantic Textual Similarity (STS) task. All features are evaluated with two types of datasets that belong to Bosch bug and Wikipedia article reports. This study aims to structure the recent research efforts by comparing NLU concepts for featuring semantics of text and applying it to IR. The main contribution of this paper is a comparative study of semantic similarity measurements. The experimental results demonstrate the Term Frequency–Inverse Document Frequency (TF-IDF) feature results on both datasets with reasonable vocabulary size. It indicates that the Bidirectional Long Short Term Memory (BiLSTM) can learn the structure of a sentence to improve the classification.","PeriodicalId":42055,"journal":{"name":"Intelligenza Artificiale","volume":"20 1","pages":"623-653"},"PeriodicalIF":1.9000,"publicationDate":"2021-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligenza Artificiale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15622/IA.2021.3.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2

Abstract

This paper focuses on capturing the meaning of Natural Language Understanding (NLU) text features to detect the duplicate unsupervised features. The NLU features are compared with lexical approaches to prove the suitable classification technique. The transfer-learning approach is utilized to train the extraction of features on the Semantic Textual Similarity (STS) task. All features are evaluated with two types of datasets that belong to Bosch bug and Wikipedia article reports. This study aims to structure the recent research efforts by comparing NLU concepts for featuring semantics of text and applying it to IR. The main contribution of this paper is a comparative study of semantic similarity measurements. The experimental results demonstrate the Term Frequency–Inverse Document Frequency (TF-IDF) feature results on both datasets with reasonable vocabulary size. It indicates that the Bidirectional Long Short Term Memory (BiLSTM) can learn the structure of a sentence to improve the classification.
重复无监督特征检测的高效自然语言分类算法
本文主要研究自然语言理解(NLU)文本特征的意义捕获,以检测重复的无监督特征。将NLU特征与词法方法进行比较,以证明适合的分类技术。利用迁移学习方法对语义文本相似度(STS)任务的特征提取进行训练。所有的特征都是用两种类型的数据集来评估的,这两种数据集分别属于Bosch bug和Wikipedia文章报告。本研究的目的是通过比较NLU概念在文本语义特征及其应用于IR方面的研究成果,对近年来的研究成果进行梳理。本文的主要贡献是对语义相似度度量的比较研究。实验结果表明,术语频率-逆文档频率(TF-IDF)特征在两个数据集上都具有合理的词汇量。这表明双向长短期记忆(BiLSTM)可以通过学习句子的结构来提高分类能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Intelligenza Artificiale
Intelligenza Artificiale COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
3.50
自引率
6.70%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信