{"title":"Quantification of Iodine Mass Transfer and Height of Emulsion Phase in “Emulsion-flow” Column","authors":"Mikiro Hirayama, T. Goshima, K. Mizuta, S. Nii","doi":"10.15261/serdj.27.125","DOIUrl":null,"url":null,"abstract":"“Emulsion-flow” is a unique regime of counter-current contact between aqueous and organic phases in a column extractor. The operation enables fast mass transfer as well as stable dropwise counter-current of both phases in a simple column-type apparatus. While those advantages have been reported, prediction of the column performance has been difficult because of the lack of correlation with mass transfer coefficient and interfacial area. This study suggests correlation with overall aqueous phase mass transfer capacity coefficient, Kwa and the height of emulsion phase, H for various operating conditions. In iodine extraction, velocity of organic phase had a stronger effect on H. Furthermore Kwa was correlated with a root of H. This fact suggests that the velocity of the organic phase plays a major role in mass transfer for the case of emulsion-flow. Correlations suggested in the present study are important for rational design and scaling up of emulsion-flow columns.","PeriodicalId":21805,"journal":{"name":"Solvent Extraction Research and Development, Japan","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solvent Extraction Research and Development, Japan","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.15261/serdj.27.125","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
“Emulsion-flow” is a unique regime of counter-current contact between aqueous and organic phases in a column extractor. The operation enables fast mass transfer as well as stable dropwise counter-current of both phases in a simple column-type apparatus. While those advantages have been reported, prediction of the column performance has been difficult because of the lack of correlation with mass transfer coefficient and interfacial area. This study suggests correlation with overall aqueous phase mass transfer capacity coefficient, Kwa and the height of emulsion phase, H for various operating conditions. In iodine extraction, velocity of organic phase had a stronger effect on H. Furthermore Kwa was correlated with a root of H. This fact suggests that the velocity of the organic phase plays a major role in mass transfer for the case of emulsion-flow. Correlations suggested in the present study are important for rational design and scaling up of emulsion-flow columns.
期刊介绍:
Solvent Extraction Research and Development, Japan (Solvent Extr. Res. Dev., Jpn.) is a periodical issued from Japan Association of Solvent Extraction (JASE) containing papers dealing with all aspects of solvent extraction and their related methods, underlying principles, and materials. Original articles, notes, technical reports, and critical reviews will be considered for publication. Original articles must be of reasonably broad scope and significance to the solvent extraction. Notes will originally describe novel work of a limited nature or especially significant work in progress. Authors can contribute some information of novel techniques, equipment or apparatus, reagents and diluents for solvent extraction as technical reports. Critical reviews will be received from the authors to whom the editorial committee asked to contribute.