Entropy, Double Entry Accounting and Quantum Entanglement

Q1 Business, Management and Accounting
John C. Fellingham, Haijin Lin, Douglas A. Schroeder
{"title":"Entropy, Double Entry Accounting and Quantum Entanglement","authors":"John C. Fellingham, Haijin Lin, Douglas A. Schroeder","doi":"10.1561/1400000069","DOIUrl":null,"url":null,"abstract":"This monograph analyzes accounting using information theory developed by Claude Shannon and others. A three-way framing equivalence is derived (i) when states are observable; and (ii) when states are not observable and only a signal is observable where the signal reports the state with error. The equivalence establishes equality of accounting numbers, firm rate of return, and the amount of information available to the firm where Shannon’s entropy is the information metric. The major assumptions used in deriving the state observable equivalences are constant relative risk aversion preferences, arbitrage free prices, and geometric mean accounting valuation. State unobservability is modeled using the quantum axioms, and, hence, quantum probabilities; the state is unobservable in the same way quantum objects are unobservable. The state observable equivalence is seen to be a special case of the state unobservable equivalence. Quantum probabilities allow analyzing the effects of entanglement, a phenomenon not occurring when classical probabilities are used. Entanglement is seen to be a powerful economic force, and caused by instantaneous communication of information. We speculate double entry accounting can be a mechanism for creating entanglement effects as (i) double entry accounting conveys information relevant to the expected return maximization and entropy reduction; and (ii) it does so instantaneously as the same number is simultaneously available in two places (due to double entry).","PeriodicalId":53653,"journal":{"name":"Foundations and Trends in Accounting","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations and Trends in Accounting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/1400000069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 0

Abstract

This monograph analyzes accounting using information theory developed by Claude Shannon and others. A three-way framing equivalence is derived (i) when states are observable; and (ii) when states are not observable and only a signal is observable where the signal reports the state with error. The equivalence establishes equality of accounting numbers, firm rate of return, and the amount of information available to the firm where Shannon’s entropy is the information metric. The major assumptions used in deriving the state observable equivalences are constant relative risk aversion preferences, arbitrage free prices, and geometric mean accounting valuation. State unobservability is modeled using the quantum axioms, and, hence, quantum probabilities; the state is unobservable in the same way quantum objects are unobservable. The state observable equivalence is seen to be a special case of the state unobservable equivalence. Quantum probabilities allow analyzing the effects of entanglement, a phenomenon not occurring when classical probabilities are used. Entanglement is seen to be a powerful economic force, and caused by instantaneous communication of information. We speculate double entry accounting can be a mechanism for creating entanglement effects as (i) double entry accounting conveys information relevant to the expected return maximization and entropy reduction; and (ii) it does so instantaneously as the same number is simultaneously available in two places (due to double entry).
熵,复式记帐和量子纠缠
本专著分析会计使用信息理论开发的克劳德香农和其他人。当状态是可观察的时,导出了一个三向帧等价;(ii)当状态不可观察时,只有一个信号是可观察的,信号报告的状态是错误的。该等价建立了会计数字、企业收益率和企业可用信息量的相等性,其中香农熵是信息度量。在推导状态可观察等价物时使用的主要假设是恒定的相对风险厌恶偏好、无套利价格和几何平均会计估值。状态不可观察性使用量子公理建模,因此使用量子概率;这种状态是不可观察的,就像量子物体是不可观察的一样。状态可观测等价被看作是状态不可观测等价的一个特例。量子概率允许分析纠缠的影响,这种现象在使用经典概率时不会发生。纠缠被视为一种强大的经济力量,由信息的即时交流引起。我们推测复式记帐可能是一种产生纠缠效应的机制,因为(i)复式记帐传达了与期望收益最大化和熵减少相关的信息;(二)它是瞬间发生的,因为同一个数字在两个地方同时可用(由于复式记帐)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Foundations and Trends in Accounting
Foundations and Trends in Accounting Economics, Econometrics and Finance-Finance
CiteScore
6.50
自引率
0.00%
发文量
2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信