{"title":"Advances and Challenges in Multi-Domain Task-Oriented Dialogue Policy Optimization","authors":"Mahdin Rohmatillah, Jen-Tzung Chien","doi":"10.1561/116.00000132","DOIUrl":null,"url":null,"abstract":"Developing a successful dialogue policy for a multi-domain task-oriented dialogue (MDTD) system is a challenging task. Basically, a desirable dialogue policy acts as the decision-making agent who understands the user’s intention to provide suitable responses within a short conversation. Furthermore, offering the precise answers to satisfy the user requirements makes the task even more challenging. This paper surveys recent advances in multi-domain task-oriented dialogue policy optimization and summarizes a number of solutions to policy learning. In particular, the case study on the task of travel assistance using the MDTD dataset based on MultiWOZ containing seven different domains is investigated. The dialogue policy optimization methods, categorized into dialogue act level and word level, are systematically presented. Moreover, this paper addresses a number of challenges and difficulties including the user simulator design and the dialogue policy evaluation which need to be resolved to further enhance the robustness and effectiveness in multi-domain dialogue policy representation. ∗Corresponding author: Jen-Tzung Chien, jtchien@nycu.edu.tw. Received 22 May 2023; Revised 20 July 2023 ISSN 2048-7703; DOI 10.1561/116.00000132 © 2023 M. Rohmatillah and J.-T. Chien 2 Rohmatillah and Chien","PeriodicalId":44812,"journal":{"name":"APSIPA Transactions on Signal and Information Processing","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APSIPA Transactions on Signal and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/116.00000132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
面向多领域任务的对话策略优化研究进展与挑战
为多域面向任务的对话(mtd)系统开发成功的对话策略是一项具有挑战性的任务。基本上,理想的对话策略充当决策代理,它理解用户的意图,以便在简短的对话中提供合适的响应。此外,提供精确的答案来满足用户的需求使得这项任务更具挑战性。本文综述了面向多领域任务的对话策略优化研究的最新进展,并总结了一些策略学习的解决方案。特别地,对基于包含七个不同域的MultiWOZ的MDTD数据集的旅行辅助任务进行了案例研究。系统地介绍了对话行为层面和话语层面的对话政策优化方法。为了进一步提高多域对话策略表示的鲁棒性和有效性,本文还解决了用户模拟器设计和对话策略评估等方面需要解决的挑战和困难。*通讯作者:钱仁宗,jtchien@nycu.edu.tw。2023年5月22日收到;2023年7月20日修订ISSN 2048-7703;DOI 10.1561/116.00000132©2023 M. Rohmatillah and j . t。Rohmatillah和Chien
本文章由计算机程序翻译,如有差异,请以英文原文为准。