Effects of Imprinting and Water Activity on Transesterification and Thermostability with Lipases in Ionic Liquid

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
M. Matsumoto, K. Nakao, Y. Tahara
{"title":"Effects of Imprinting and Water Activity on Transesterification and Thermostability with Lipases in Ionic Liquid","authors":"M. Matsumoto, K. Nakao, Y. Tahara","doi":"10.15255/CABEQ.2020.1899","DOIUrl":null,"url":null,"abstract":"The effect of bio-imprinting and water activity on catalytic activities and the thermostability of lipases was investigated for transesterification using vinyl acetate and benzyl alcohol as substrates in ionic liquid, [Cnmim][PF6] (n=4,6,8), and benzene. The catalytic activities were enhanced by imprinting in benzene and [C4mim][PF6], and the relations between the transesterification activities and the water activity in both solvents were approximately bell shaped. The reactivity of the transesterification in benzene was higher than that in [C4mim][PF6]. The effects of water activity and imprinting on the kinetic parameters in [C4mim][PF6] were examined. Without controlling the water content, the values of Km,VA and Km,BA (Michaelis constants of vinyl acetate and benzyl alcohol, respectively) decreased, and the values of Vm (maximum rate) increased by imprinting. On the other hand, by controlling the water content in the organic media, the values of Vm, Km,VA, and Km,BA increased by imprinting. The activities of lipase in ionic liquid are more strongly affected by water activity and imprinting than those in benzene. We observed effects of water activity on thermostability but none from imprinting.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.15255/CABEQ.2020.1899","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of bio-imprinting and water activity on catalytic activities and the thermostability of lipases was investigated for transesterification using vinyl acetate and benzyl alcohol as substrates in ionic liquid, [Cnmim][PF6] (n=4,6,8), and benzene. The catalytic activities were enhanced by imprinting in benzene and [C4mim][PF6], and the relations between the transesterification activities and the water activity in both solvents were approximately bell shaped. The reactivity of the transesterification in benzene was higher than that in [C4mim][PF6]. The effects of water activity and imprinting on the kinetic parameters in [C4mim][PF6] were examined. Without controlling the water content, the values of Km,VA and Km,BA (Michaelis constants of vinyl acetate and benzyl alcohol, respectively) decreased, and the values of Vm (maximum rate) increased by imprinting. On the other hand, by controlling the water content in the organic media, the values of Vm, Km,VA, and Km,BA increased by imprinting. The activities of lipase in ionic liquid are more strongly affected by water activity and imprinting than those in benzene. We observed effects of water activity on thermostability but none from imprinting.
印迹和水活度对离子液体中脂肪酶酯交换和热稳定性的影响
采用离子液体[Cnmim][PF6] (n=4,6,8)和苯为底物,研究了生物印迹和水活性对酯交换酶催化活性和热稳定性的影响。在苯和[C4mim][PF6]中印迹可提高催化活性,两种溶剂中酯交换活性与水活度呈近似钟形关系。在苯中的酯交换反应活性高于在[C4mim][PF6]中的反应活性。考察了水活度和印迹对[C4mim][PF6]中动力学参数的影响。在不控制含水量的情况下,压印可降低乙酸乙烯酯和苯甲醇的米切里斯常数Km、VA和Km、BA,提高最大速率Vm。另一方面,通过控制有机介质中的含水量,Vm、Km、VA和Km、BA的值通过压印而增加。脂肪酶在离子液体中的活性受水活度和印迹的影响比在苯中的活性更大。我们观察到水活度对热稳定性的影响,但印迹没有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信