{"title":"Removal Efficiency of Lipid-regulating Drug Clofibric Acid from the Aquatic Environment by Calcined Anionic Clay ZnAl-CO3","authors":"E. Mourid, M. Lakraimi, L. Benaziz, M. Cherkaoui","doi":"10.15255/cabeq.2020.1797","DOIUrl":null,"url":null,"abstract":"Clofibric acid (CA) is widely used as regulator of lipid levels in blood; it is considered one of the residual drugs that have a high persistence in the aquatic environment. After wastewater treatment, only a small amount of CA can be removed. The aim of this work was to investigate the reduction of CA in contaminated wastewater using calcined anionic clay ZnAl-CO3, which was chosen for its higher adsorption capacity, recyclability, and non-regeneration of sludge. The maximum retention amount, Qm, exceeded 2220 mg g–1, and the value of DH° suggested a physical process. The removal rate achieved 90 %, and the remaining quantity was widely below the tolerance thresholds. Retention was achieved by hydrogen bonds and electrostatic interactions between the adsorbate molecules. Recycling tests clearly suggested that this material is recyclable, promising, and very effective compared to other adsorbents. This retention contributes to the attenuation of persistent lipid regulator.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biochemical Engineering Quarterly","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.15255/cabeq.2020.1797","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Clofibric acid (CA) is widely used as regulator of lipid levels in blood; it is considered one of the residual drugs that have a high persistence in the aquatic environment. After wastewater treatment, only a small amount of CA can be removed. The aim of this work was to investigate the reduction of CA in contaminated wastewater using calcined anionic clay ZnAl-CO3, which was chosen for its higher adsorption capacity, recyclability, and non-regeneration of sludge. The maximum retention amount, Qm, exceeded 2220 mg g–1, and the value of DH° suggested a physical process. The removal rate achieved 90 %, and the remaining quantity was widely below the tolerance thresholds. Retention was achieved by hydrogen bonds and electrostatic interactions between the adsorbate molecules. Recycling tests clearly suggested that this material is recyclable, promising, and very effective compared to other adsorbents. This retention contributes to the attenuation of persistent lipid regulator.
期刊介绍:
The journal provides an international forum for presentation of original papers, reviews and discussions on the latest developments in chemical and biochemical engineering. The scope of the journal is wide and no limitation except relevance to chemical and biochemical engineering is required.
The criteria for the acceptance of papers are originality, quality of work and clarity of style. All papers are subject to reviewing by at least two international experts (blind peer review).
The language of the journal is English. Final versions of the manuscripts are subject to metric (SI units and IUPAC recommendations) and English language reviewing.
Editor and Editorial board make the final decision about acceptance of a manuscript.
Page charges are excluded.