Lattice Boltzmann Modeling-based Design of a Membrane-free Liquid-liquid Microseparator

IF 1.6 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
F. Strniša, P. Žnidaršič-Plazl, I. Plazl
{"title":"Lattice Boltzmann Modeling-based Design of a Membrane-free Liquid-liquid Microseparator","authors":"F. Strniša, P. Žnidaršič-Plazl, I. Plazl","doi":"10.15255/cabeq.2020.1781","DOIUrl":null,"url":null,"abstract":"The benefits of continuous processing and the challenges related to the integration with efficient downstream units for end-to-end manufacturing have spurred the development of efficient miniaturized continuously-operated separators. Membrane-free microseparators with specifically positioned internal structures subjecting fluids to a capillary pressure gradient have been previously shown to enable efficient gas-liquid separation. Here we present initial studies on the model-based design of a liquid-liquid microseparator with pillars of various diameters between two plates. For the optimization of in silico separator performance, mesoscopic lattice-Boltzmann modeling was used. Simulation results at various conditions revealed the possibility to improve the separation of two liquids by changing the geometrical characteristics of the microseparator.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biochemical Engineering Quarterly","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.15255/cabeq.2020.1781","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

The benefits of continuous processing and the challenges related to the integration with efficient downstream units for end-to-end manufacturing have spurred the development of efficient miniaturized continuously-operated separators. Membrane-free microseparators with specifically positioned internal structures subjecting fluids to a capillary pressure gradient have been previously shown to enable efficient gas-liquid separation. Here we present initial studies on the model-based design of a liquid-liquid microseparator with pillars of various diameters between two plates. For the optimization of in silico separator performance, mesoscopic lattice-Boltzmann modeling was used. Simulation results at various conditions revealed the possibility to improve the separation of two liquids by changing the geometrical characteristics of the microseparator.
基于格子玻尔兹曼建模的无膜液液微分离器设计
连续处理的好处以及与端到端制造的高效下游单元集成相关的挑战刺激了高效小型化连续操作分离器的发展。无膜微分离器具有特殊定位的内部结构,使流体服从毛细管压力梯度,以前已经证明可以实现有效的气液分离。在这里,我们提出了基于模型的设计液液微分离器的初步研究,两板之间有不同直径的柱。为了优化硅分离器的性能,采用介观晶格-玻尔兹曼模型。在各种条件下的模拟结果表明,通过改变微分离器的几何特性可以改善两种液体的分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical and Biochemical Engineering Quarterly
Chemical and Biochemical Engineering Quarterly 工程技术-工程:化工
CiteScore
2.70
自引率
6.70%
发文量
23
审稿时长
>12 weeks
期刊介绍: The journal provides an international forum for presentation of original papers, reviews and discussions on the latest developments in chemical and biochemical engineering. The scope of the journal is wide and no limitation except relevance to chemical and biochemical engineering is required. The criteria for the acceptance of papers are originality, quality of work and clarity of style. All papers are subject to reviewing by at least two international experts (blind peer review). The language of the journal is English. Final versions of the manuscripts are subject to metric (SI units and IUPAC recommendations) and English language reviewing. Editor and Editorial board make the final decision about acceptance of a manuscript. Page charges are excluded.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信