Support Vector Machine-based Soft Sensors in the Isomerisation Process

IF 1.6 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
S. Herceg, Z. U. Andrijic, N. Bolf
{"title":"Support Vector Machine-based Soft Sensors in the Isomerisation Process","authors":"S. Herceg, Z. U. Andrijic, N. Bolf","doi":"10.15255/CABEQ.2020.1825","DOIUrl":null,"url":null,"abstract":"This paper presents the development of soft sensor empirical models using support vector machine (SVM) for the continual assessment of 2,3-dimethylbutane and 2-methylpentane mole percentage as important product quality indicators in the refinery isomerisation process. During the model development, critical steps were taken, including selection and pre-processing of the industrial process data, which are broadly discussed in this paper. The SVM model results were compared with dynamic linear output error model and nonlinear Hammerstein-Wiener model. Evaluation of the developed models on independent data sets showed their reliability in the assessment of the component contents. The soft sensors are to be embedded into the process control system, and serve primarily as a replacement during the process analysersb failure and service periods.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biochemical Engineering Quarterly","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.15255/CABEQ.2020.1825","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents the development of soft sensor empirical models using support vector machine (SVM) for the continual assessment of 2,3-dimethylbutane and 2-methylpentane mole percentage as important product quality indicators in the refinery isomerisation process. During the model development, critical steps were taken, including selection and pre-processing of the industrial process data, which are broadly discussed in this paper. The SVM model results were compared with dynamic linear output error model and nonlinear Hammerstein-Wiener model. Evaluation of the developed models on independent data sets showed their reliability in the assessment of the component contents. The soft sensors are to be embedded into the process control system, and serve primarily as a replacement during the process analysersb failure and service periods.
异构化过程中基于支持向量机的软传感器
本文提出了利用支持向量机(SVM)建立软测量经验模型,用于连续评价炼油厂异构化过程中2,3-二甲基丁烷和2-甲基戊烷的摩尔率作为重要的产品质量指标。在模型开发过程中,采取了关键步骤,包括工业过程数据的选择和预处理,这在本文中进行了广泛的讨论。将SVM模型结果与动态线性输出误差模型和非线性Hammerstein-Wiener模型进行了比较。在独立数据集上对所建立的模型进行了评价,表明其在评估成分含量方面的可靠性。软传感器将嵌入到过程控制系统中,并主要作为过程分析仪故障和服务期间的替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical and Biochemical Engineering Quarterly
Chemical and Biochemical Engineering Quarterly 工程技术-工程:化工
CiteScore
2.70
自引率
6.70%
发文量
23
审稿时长
>12 weeks
期刊介绍: The journal provides an international forum for presentation of original papers, reviews and discussions on the latest developments in chemical and biochemical engineering. The scope of the journal is wide and no limitation except relevance to chemical and biochemical engineering is required. The criteria for the acceptance of papers are originality, quality of work and clarity of style. All papers are subject to reviewing by at least two international experts (blind peer review). The language of the journal is English. Final versions of the manuscripts are subject to metric (SI units and IUPAC recommendations) and English language reviewing. Editor and Editorial board make the final decision about acceptance of a manuscript. Page charges are excluded.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信