{"title":"A Combined Approach For Private Indexing Mechanism","authors":"Pranita Desai, V. Shelake","doi":"10.15394/jdfsl.2022.1790","DOIUrl":null,"url":null,"abstract":"Private indexing is a set of approaches for analyzing research data that are similar or resemble similar ones. This is used in the database to keep track of the keys and their values. The main subject of this research is private indexing in record linkage to secure the data. Because unique personal identification numbers or social security numbers are not accessible in most countries or databases, data linkage is limited to attributes such as date of birth and names to distinguish between the number of records and the real-life entities they represent. For security reasons, the encryption of these identifiers is required. Privacy-preserving record linkage, frequently used to link private data within several databases from different companies, prevents sensitive information from being exposed to other companies. This research used a combined method to evaluate the data, using classic and new indexing methods. A combined approach is more secure than typical standard indexing in terms of privacy. Multibit tree indexing, which groups comparable data in many ways, creates a scalable tree-like structure that is both space and time flexible, as it avoids the need for redundant block structures. Because the record pair numbers to compare are the Cartesian product of both the file record numbers, the work required grows with the number of records to compare in the files. The evaluation findings of this research showed that combined method is scalable in terms of the number of databases to be linked, the database size, and the time required.","PeriodicalId":43224,"journal":{"name":"Journal of Digital Forensics Security and Law","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Forensics Security and Law","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15394/jdfsl.2022.1790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Private indexing is a set of approaches for analyzing research data that are similar or resemble similar ones. This is used in the database to keep track of the keys and their values. The main subject of this research is private indexing in record linkage to secure the data. Because unique personal identification numbers or social security numbers are not accessible in most countries or databases, data linkage is limited to attributes such as date of birth and names to distinguish between the number of records and the real-life entities they represent. For security reasons, the encryption of these identifiers is required. Privacy-preserving record linkage, frequently used to link private data within several databases from different companies, prevents sensitive information from being exposed to other companies. This research used a combined method to evaluate the data, using classic and new indexing methods. A combined approach is more secure than typical standard indexing in terms of privacy. Multibit tree indexing, which groups comparable data in many ways, creates a scalable tree-like structure that is both space and time flexible, as it avoids the need for redundant block structures. Because the record pair numbers to compare are the Cartesian product of both the file record numbers, the work required grows with the number of records to compare in the files. The evaluation findings of this research showed that combined method is scalable in terms of the number of databases to be linked, the database size, and the time required.