PLS Generalized Linear Regression and Kernel Multilogit Algorithm (KMA) for Microarray Data Classification Problem

Q3 Mathematics
Adolphus Wagala, G. González-Farías, Rogelio Ramos, Oscar Dalmau
{"title":"PLS Generalized Linear Regression and Kernel Multilogit Algorithm (KMA) for Microarray Data Classification Problem","authors":"Adolphus Wagala, G. González-Farías, Rogelio Ramos, Oscar Dalmau","doi":"10.15446/rce.v43n2.81811","DOIUrl":null,"url":null,"abstract":"This study involves the implentation of the extensions of the partial least squares generalized linear regression (PLSGLR) by combining  it with logistic regression and  linear  discriminant analysis,  to  get a  partial least  squares generalized linear  regression-logistic regression model (PLSGLR-log),  and a partial least squares generalized linear regression-linear discriminant analysis model (PLSGLRDA). A comparative  study  of  the obtained  classifiers with   the   classical  methodologies like  the k-nearest  neighbours (KNN), linear   discriminant  analysis  (LDA),   partial  least  squares discriminant analysis (PLSDA),  ridge  partial least squares (RPLS), and  support vector machines(SVM)  is  then  carried  out.    Furthermore,  a  new  methodology known as kernel multilogit algorithm (KMA) is also implemented and its performance compared with those of the other classifiers. The KMA emerged as the best classifier based  on the lowest  classification error  rates  compared to  the  others  when  applied   to  the  types   of data   are considered;  the  un- preprocessed and preprocessed.","PeriodicalId":54477,"journal":{"name":"Revista Colombiana De Estadistica","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana De Estadistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/rce.v43n2.81811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

This study involves the implentation of the extensions of the partial least squares generalized linear regression (PLSGLR) by combining  it with logistic regression and  linear  discriminant analysis,  to  get a  partial least  squares generalized linear  regression-logistic regression model (PLSGLR-log),  and a partial least squares generalized linear regression-linear discriminant analysis model (PLSGLRDA). A comparative  study  of  the obtained  classifiers with   the   classical  methodologies like  the k-nearest  neighbours (KNN), linear   discriminant  analysis  (LDA),   partial  least  squares discriminant analysis (PLSDA),  ridge  partial least squares (RPLS), and  support vector machines(SVM)  is  then  carried  out.    Furthermore,  a  new  methodology known as kernel multilogit algorithm (KMA) is also implemented and its performance compared with those of the other classifiers. The KMA emerged as the best classifier based  on the lowest  classification error  rates  compared to  the  others  when  applied   to  the  types   of data   are considered;  the  un- preprocessed and preprocessed.
微阵列数据分类问题的PLS广义线性回归与核多重对数算法(KMA
本研究将偏最小二乘广义线性回归(PLSGLR)与逻辑回归和线性判别分析相结合,对其进行扩展,得到偏最小二乘广义线性回归-逻辑回归模型(PLSGLR-log)和偏最小二乘广义线性回归-线性判别分析模型(PLSGLRDA)。然后将得到的分类器与经典方法如k近邻(KNN)、线性判别分析(LDA)、偏最小二乘判别分析(PLSDA)、脊偏最小二乘(RPLS)和支持向量机(SVM)进行了比较研究。此外,本文还实现了一种新的核多重对数算法(KMA),并将其性能与其他分类器进行了比较。当应用于考虑数据类型时,KMA与其他分类器相比,以最低的分类错误率成为最佳分类器;未预处理和预处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Revista Colombiana De Estadistica
Revista Colombiana De Estadistica STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: The Colombian Journal of Statistics publishes original articles of theoretical, methodological and educational kind in any branch of Statistics. Purely theoretical papers should include illustration of the techniques presented with real data or at least simulation experiments in order to verify the usefulness of the contents presented. Informative articles of high quality methodologies or statistical techniques applied in different fields of knowledge are also considered. Only articles in English language are considered for publication. The Editorial Committee assumes that the works submitted for evaluation have not been previously published and are not being given simultaneously for publication elsewhere, and will not be without prior consent of the Committee, unless, as a result of the assessment, decides not publish in the journal. It is further assumed that when the authors deliver a document for publication in the Colombian Journal of Statistics, they know the above conditions and agree with them.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信