Local Changes in Lipid Composition to Match Membrane Curvature

Q2 Mathematics
R. Ryham
{"title":"Local Changes in Lipid Composition to Match Membrane Curvature","authors":"R. Ryham","doi":"10.1515/mlbmb-2016-0003","DOIUrl":null,"url":null,"abstract":"Abstract A continuum mechanical model based on the Helfrich Hamiltonian is devised to investigate the coupling between lipid composition and membrane curvature. Each monolayer in the bilayer is modeled as a freely deformable surface with a director field for lipid orientation. A scalar field for the mole fraction of two lipid types accounts for local changes in composition. It allows lipids to access monolayer regions favorable to their intrinsic curvature at the expense of increasing entropic free energy. Hemifusion is one of the key fusion intermediates with regions of both positive and negative membrane curvature and where proteins must supply energy in order to bring about large elastic distortions. Using a numerical gradient descent scheme, minimal energy axisymmetric shapes of hemifusion diaphragms are calculated for varying radii. Previous studies assumed a fixed, weighted average for spontaneous curvature. Allowing for local changes in spontaneous curvature yields energies and forces of expansion significantly lower than those obtained from a fixed composition.","PeriodicalId":34018,"journal":{"name":"Computational and Mathematical Biophysics","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mlbmb-2016-0003","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mlbmb-2016-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract A continuum mechanical model based on the Helfrich Hamiltonian is devised to investigate the coupling between lipid composition and membrane curvature. Each monolayer in the bilayer is modeled as a freely deformable surface with a director field for lipid orientation. A scalar field for the mole fraction of two lipid types accounts for local changes in composition. It allows lipids to access monolayer regions favorable to their intrinsic curvature at the expense of increasing entropic free energy. Hemifusion is one of the key fusion intermediates with regions of both positive and negative membrane curvature and where proteins must supply energy in order to bring about large elastic distortions. Using a numerical gradient descent scheme, minimal energy axisymmetric shapes of hemifusion diaphragms are calculated for varying radii. Previous studies assumed a fixed, weighted average for spontaneous curvature. Allowing for local changes in spontaneous curvature yields energies and forces of expansion significantly lower than those obtained from a fixed composition.
脂质组成的局部变化与膜曲率相匹配
摘要建立了基于Helfrich哈密顿量的连续介质力学模型,研究了膜曲率与脂质组成的耦合关系。双分子层中的每一个单分子层都被建模成一个自由变形的表面,具有一个用于脂质取向的定向场。两种脂质摩尔分数的标量场解释了组成的局部变化。它允许脂质以增加熵自由能为代价进入有利于其固有曲率的单层区域。半融合是关键的融合中间体之一,它具有正、负膜曲率区域,蛋白质必须在该区域提供能量才能产生较大的弹性扭曲。采用数值梯度下降格式,计算了不同半径下半渗膜的最小能量轴对称形状。以前的研究假设了一个固定的、加权平均的自发曲率。考虑到自发曲率的局部变化,得到的膨胀能量和力明显低于从固定成分得到的能量和力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational and Mathematical Biophysics
Computational and Mathematical Biophysics Mathematics-Mathematical Physics
CiteScore
2.50
自引率
0.00%
发文量
8
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信