{"title":"Mesh Generation and Flexible Shape Comparisons for Bio-Molecules","authors":"Zhanheng Gao, Reihaneh Rostami, Xiaoli Pang, Zhicheng Fu, Zeyun Yu","doi":"10.1515/mlbmb-2016-0001","DOIUrl":null,"url":null,"abstract":"Abstract Novel approaches for generating and comparing flexible (non-rigid) molecular surface meshes are developed. The mesh-generating method is fast and memory-efficient. The resulting meshes are smooth and accurate, and possess high mesh quality. An isometric-invariant shape descriptor based on the Laplace- Beltrami operator is then explored for mesh comparing. The new shape descriptor is more powerful in discriminating different surface shapes but rely only on a small set of signature values. The shape descriptor is applied to shape comparison between molecules with deformed structures. The proposed methods are implemented into a program that can be used as a stand-alone software tool or as a plug-in to other existing molecular modeling tools. Particularly, the code is encapsulated into a software toolkit with a user-friendly graphical interface developed by the authors.","PeriodicalId":34018,"journal":{"name":"Computational and Mathematical Biophysics","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mlbmb-2016-0001","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mlbmb-2016-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract Novel approaches for generating and comparing flexible (non-rigid) molecular surface meshes are developed. The mesh-generating method is fast and memory-efficient. The resulting meshes are smooth and accurate, and possess high mesh quality. An isometric-invariant shape descriptor based on the Laplace- Beltrami operator is then explored for mesh comparing. The new shape descriptor is more powerful in discriminating different surface shapes but rely only on a small set of signature values. The shape descriptor is applied to shape comparison between molecules with deformed structures. The proposed methods are implemented into a program that can be used as a stand-alone software tool or as a plug-in to other existing molecular modeling tools. Particularly, the code is encapsulated into a software toolkit with a user-friendly graphical interface developed by the authors.