Preprocessing kNN algorithm classification using K-means and distance matrix with students’ academic performance dataset

Sugriyono Sugriyono, M. U. Siregar
{"title":"Preprocessing kNN algorithm classification using K-means and distance matrix with students’ academic performance dataset","authors":"Sugriyono Sugriyono, M. U. Siregar","doi":"10.14710/jtsiskom.2020.13874","DOIUrl":null,"url":null,"abstract":"The existence of outliers in the dataset can cause low accuracy in a classification process. Outliers in the dataset can be removed from a preprocessing stage of classification algorithms. Clustering can be used as an outlier detection method. This study applies K-means and a distance matrix to detect outliers and remove them from datasets with class labels. This research used a dataset of students’ academic performance totaling 6847 instances, having 18 attributes and 3 class labels. Preprocessing applies the K-means method to get centroid in each class. The distance matrix is used to evaluate the distance of instance to the centroid. Outliers, which are a different class, will be removed from the dataset. This preprocessing improves the classification accuracy of the kNN algorithm. Data without preprocessing has 72.28 % accuracy, preprocessed data using K-means with Euclidean has 98.42 % accuracy (an increase of 26.14 %), while the K-means with Manhattan has 97.76 % accuracy (an increase of 25.48 %).","PeriodicalId":56231,"journal":{"name":"Jurnal Teknologi dan Sistem Komputer","volume":"465 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Sistem Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/jtsiskom.2020.13874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The existence of outliers in the dataset can cause low accuracy in a classification process. Outliers in the dataset can be removed from a preprocessing stage of classification algorithms. Clustering can be used as an outlier detection method. This study applies K-means and a distance matrix to detect outliers and remove them from datasets with class labels. This research used a dataset of students’ academic performance totaling 6847 instances, having 18 attributes and 3 class labels. Preprocessing applies the K-means method to get centroid in each class. The distance matrix is used to evaluate the distance of instance to the centroid. Outliers, which are a different class, will be removed from the dataset. This preprocessing improves the classification accuracy of the kNN algorithm. Data without preprocessing has 72.28 % accuracy, preprocessed data using K-means with Euclidean has 98.42 % accuracy (an increase of 26.14 %), while the K-means with Manhattan has 97.76 % accuracy (an increase of 25.48 %).
利用K-means和距离矩阵对学生学习成绩数据集进行kNN算法分类预处理
数据集中异常值的存在会导致分类过程的准确率较低。数据集中的异常值可以从分类算法的预处理阶段去除。聚类可以作为一种异常点检测方法。本研究应用K-means和距离矩阵来检测异常值,并将其从带有类标签的数据集中移除。本研究使用的学生学习成绩数据集共有6847个实例,有18个属性和3个类标签。预处理采用K-means方法得到每一类的质心。距离矩阵用于计算实例到质心的距离。异常值是一个不同的类别,将从数据集中删除。这种预处理提高了kNN算法的分类精度。未经预处理的数据准确率为72.28%,使用欧氏K-means预处理的数据准确率为98.42%(提高26.14%),而使用曼哈顿K-means的数据准确率为97.76%(提高25.48%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
6
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信