{"title":"Adaptive Design for Staggered-Start Clinical Trial","authors":"A. Yuan, Qizhai Li, Ming Xiong, M. Tan","doi":"10.1515/ijb-2015-0011","DOIUrl":null,"url":null,"abstract":"Abstract In phase II and/or III clinical trial study, there are several competing treatments, the goal is to assess the performances of the treatments at the end of the study, the trial design aims to minimize risks to the patients in the trial, according to some given allocation optimality criterion. Recently, a new type of clinical trial, the staggered-start trial has been proposed in some studies, in which different treatments enter the same trial at different times. Some basic questions for this trial are whether optimality can still be kept? under what conditions? and if so how to allocate the the coming patients to treatments to achieve such optimality? Here we propose and study a class of adaptive designs of staggered-start clinical trials, in which for given optimality criterion object, we show that as long as the initial sizes at the beginning of the successive trials are not too large relative to the total sample size, the proposed design can still achieve optimality criterion asymptotically for the allocation proportions as the ordinary trials; if these initial sample sizes have about the same magnitude as the total sample size, full optimality cannot be achieved. The proposed method is simple to use and is illustrated with several examples and a simulation study.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"12 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2015-0011","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2015-0011","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In phase II and/or III clinical trial study, there are several competing treatments, the goal is to assess the performances of the treatments at the end of the study, the trial design aims to minimize risks to the patients in the trial, according to some given allocation optimality criterion. Recently, a new type of clinical trial, the staggered-start trial has been proposed in some studies, in which different treatments enter the same trial at different times. Some basic questions for this trial are whether optimality can still be kept? under what conditions? and if so how to allocate the the coming patients to treatments to achieve such optimality? Here we propose and study a class of adaptive designs of staggered-start clinical trials, in which for given optimality criterion object, we show that as long as the initial sizes at the beginning of the successive trials are not too large relative to the total sample size, the proposed design can still achieve optimality criterion asymptotically for the allocation proportions as the ordinary trials; if these initial sample sizes have about the same magnitude as the total sample size, full optimality cannot be achieved. The proposed method is simple to use and is illustrated with several examples and a simulation study.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.