Perbandingan Naïve Bayes Classifier dan Support Vector Machine untuk Klasifikasi Judul Artikel

Muhammad Rifqi Maarif
{"title":"Perbandingan Naïve Bayes Classifier dan Support Vector Machine untuk Klasifikasi Judul Artikel","authors":"Muhammad Rifqi Maarif","doi":"10.14421/jiska.2016.12-05","DOIUrl":null,"url":null,"abstract":"Support Vector Machine (SVM) dan Naïve Bayes Classifier (NBC) merupakan dua algoritma yang sangat polpuler untuk text mining, khususnya untuk klasifikasi teks. Pada penelitian-penelitian sebelumnya SVM cenerung menghasilkan performa yang lebih baik dari NBC pada segi akurasi hasil klasifikasi. Salah satu hal yang menarik dari penelitian-penelitian sebelumnya adalah penggunaan jenis data yang hamper sama antara satu dengan lainnya. Penelitian-penelitian sebelumnya kebanyakan menggunakan data tweet dari situs Twitter. Data tweet merupakan jenis teks yang informal dengan banyak sekali noise dan tidak mengindahkan aturan tata bahasa. Pada penelitian kali ini, akan algoritma SVM dan NBC akan diujicobakan kedalam data teks yang lebih formal, yakni data dari judul-judul artikel. Dalam percobaan yang sudah dilakukan, didapatkan hasil yang berbeda dengan penelitian sebelumnya. Pada klasifikasi teks judul artikel NBC memiliki performa akurasi yang lebih baik jika dibandingkan dengan SVM.","PeriodicalId":34216,"journal":{"name":"JISKA Jurnal Informatika Sunan Kalijaga","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JISKA Jurnal Informatika Sunan Kalijaga","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14421/jiska.2016.12-05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Support Vector Machine (SVM) dan Naïve Bayes Classifier (NBC) merupakan dua algoritma yang sangat polpuler untuk text mining, khususnya untuk klasifikasi teks. Pada penelitian-penelitian sebelumnya SVM cenerung menghasilkan performa yang lebih baik dari NBC pada segi akurasi hasil klasifikasi. Salah satu hal yang menarik dari penelitian-penelitian sebelumnya adalah penggunaan jenis data yang hamper sama antara satu dengan lainnya. Penelitian-penelitian sebelumnya kebanyakan menggunakan data tweet dari situs Twitter. Data tweet merupakan jenis teks yang informal dengan banyak sekali noise dan tidak mengindahkan aturan tata bahasa. Pada penelitian kali ini, akan algoritma SVM dan NBC akan diujicobakan kedalam data teks yang lebih formal, yakni data dari judul-judul artikel. Dalam percobaan yang sudah dilakukan, didapatkan hasil yang berbeda dengan penelitian sebelumnya. Pada klasifikasi teks judul artikel NBC memiliki performa akurasi yang lebih baik jika dibandingkan dengan SVM.
Naive Bayes分类器与支持向量机在文章标题分类中的比较
支持向量机(SVM)和Naive Bayes Classifier (NBC)是文本分类的两种非常偏颇的算法。在之前的SVM cenerung研究中,在分类准确性方面比NBC表现更好。早期研究的一个有趣之处在于,人们使用的数据是相互平衡的。之前的研究主要使用Twitter上的推特数据。推特数据是一种非正式的文本,它有大量的噪音,无视语法规则。在这次的研究中,将SVM算法和NBC算法测试成更正式的文本数据,这些数据来自文章标题。在已经进行的实验中,结果与之前的研究不同。在NBC文章标题文章的分类中,与SVM相比,其性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
21
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信