{"title":"Building detection with convolutional networks trained with transfer learning","authors":"S. Šanca, K. Oštir, Alen Mangafić","doi":"10.15292/geodetski-vestnik.2021.04.559-593","DOIUrl":null,"url":null,"abstract":"Building footprint detection based on orthophotos can be used to update the building cadastre. In recent years deep learning methods using convolutional neural networks have been increasingly used around the world. We present an example of automatic building classification using our datasets made of colour near-infrared orthophotos (NIR-R-G) and colour orthophotos (R-G-B). Building detection using pretrained weights from two large scale datasets Microsoft Common Objects in Context (MS COCO) and ImageNet was performed and tested. We applied the Mask Region Convolutional Neural Network (Mask R-CNN) to detect the building footprints. The purpose of our research is to identify the applicability of pre-trained neural networks on the data of another colour space to build a classification model without re-learning.","PeriodicalId":44295,"journal":{"name":"Geodetski Vestnik","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodetski Vestnik","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.15292/geodetski-vestnik.2021.04.559-593","RegionNum":4,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 1
Abstract
Building footprint detection based on orthophotos can be used to update the building cadastre. In recent years deep learning methods using convolutional neural networks have been increasingly used around the world. We present an example of automatic building classification using our datasets made of colour near-infrared orthophotos (NIR-R-G) and colour orthophotos (R-G-B). Building detection using pretrained weights from two large scale datasets Microsoft Common Objects in Context (MS COCO) and ImageNet was performed and tested. We applied the Mask Region Convolutional Neural Network (Mask R-CNN) to detect the building footprints. The purpose of our research is to identify the applicability of pre-trained neural networks on the data of another colour space to build a classification model without re-learning.
基于正射影像的建筑物足迹检测可用于建筑物地籍更新。近年来,使用卷积神经网络的深度学习方法在世界范围内得到了越来越多的应用。我们提出了一个使用彩色近红外正射影像(NIR-R-G)和彩色正射影像(R-G-B)组成的数据集进行自动建筑分类的例子。使用来自两个大型数据集Microsoft Common Objects in Context (MS COCO)和ImageNet的预训练权值进行建筑检测并进行了测试。我们应用掩模区域卷积神经网络(Mask R-CNN)来检测建筑物足迹。我们研究的目的是确定预训练的神经网络在另一个色彩空间数据上的适用性,以建立一个不需要重新学习的分类模型。
期刊介绍:
Zveza geodetov Slovenije v skladu s svojim poslanstvom in s svojim statutom, izdaja znanstveno, strokovno in informativno glasilo Geodetski vestnik. Izhaja v nakladi 1200 izvodov. Objavlja znanstvene, strokovne in poljudno strokovne prispevke ter informacije. Revija je dostopna v večjem številu sekundarnih podatkovnih baz po svetu in mnogih knjižnicah. Od leta 2008 je vključena v Thomson Scientific bazo podatkov SCI. Cena izvoda revije je za nečlane 17 Evrov.