{"title":"Stratospheric aerosol injection may impact global systems and human health outcomes","authors":"S. M. Tracy, J. Moch, S. Eastham, J. Buonocore","doi":"10.1525/elementa.2022.00047","DOIUrl":null,"url":null,"abstract":"Solar radiation management (SRM) is a climate engineering strategy to reduce temperature increases due to global climate change. The most well-researched SRM methodology is stratospheric aerosol injection (SAI), which involves increasing the concentration of aerosol particles in the stratosphere to reduce the amount of solar radiation reaching Earth’s surface. The most considered and heavily researched aerosol for SAI is sulfate. SAI has been extensively modeled using various climate scenarios and investigated using data from previous volcanic eruptions, which provide an analog of the climate effects of SAI. Prior research has determined that SAI will not only decrease global temperatures but is likely to have direct impacts on ecosystem and public health. This review seeks to investigate the various ways by which SAI may impact global public health outcomes related to hydrologic cycling, atmospheric chemical cycling, frequency of natural disasters, food system disruptions, and ecological health through the pathways of water, air, soil, and biota. SAI has the potential to decrease negative health outcomes associated with rising temperatures but may have a myriad of impacts on global environmental systems. Anthropogenically altering the global climate, through both the release of greenhouse gases or through climatic engineering, has unknown consequences, many of which will likely impact global health and quality of life. A more holistic approach is necessary to understand the relative benefits and harms in using SAI as compared to the implication of global climate change.","PeriodicalId":54279,"journal":{"name":"Elementa-Science of the Anthropocene","volume":"1 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elementa-Science of the Anthropocene","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1525/elementa.2022.00047","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 4
Abstract
Solar radiation management (SRM) is a climate engineering strategy to reduce temperature increases due to global climate change. The most well-researched SRM methodology is stratospheric aerosol injection (SAI), which involves increasing the concentration of aerosol particles in the stratosphere to reduce the amount of solar radiation reaching Earth’s surface. The most considered and heavily researched aerosol for SAI is sulfate. SAI has been extensively modeled using various climate scenarios and investigated using data from previous volcanic eruptions, which provide an analog of the climate effects of SAI. Prior research has determined that SAI will not only decrease global temperatures but is likely to have direct impacts on ecosystem and public health. This review seeks to investigate the various ways by which SAI may impact global public health outcomes related to hydrologic cycling, atmospheric chemical cycling, frequency of natural disasters, food system disruptions, and ecological health through the pathways of water, air, soil, and biota. SAI has the potential to decrease negative health outcomes associated with rising temperatures but may have a myriad of impacts on global environmental systems. Anthropogenically altering the global climate, through both the release of greenhouse gases or through climatic engineering, has unknown consequences, many of which will likely impact global health and quality of life. A more holistic approach is necessary to understand the relative benefits and harms in using SAI as compared to the implication of global climate change.
期刊介绍:
A new open-access scientific journal, Elementa: Science of the Anthropocene publishes original research reporting on new knowledge of the Earth’s physical, chemical, and biological systems; interactions between human and natural systems; and steps that can be taken to mitigate and adapt to global change. Elementa reports on fundamental advancements in research organized initially into six knowledge domains, embracing the concept that basic knowledge can foster sustainable solutions for society. Elementa is published on an open-access, public-good basis—available freely and immediately to the world.