Jazel Ouled-Cheikh, M. Coll, L. Cardona, J. Steenbeek, F. Ramírez
{"title":"Fisheries-enhanced pressure on Mediterranean regions and pelagic species already impacted by climate change","authors":"Jazel Ouled-Cheikh, M. Coll, L. Cardona, J. Steenbeek, F. Ramírez","doi":"10.1525/elementa.2022.00028","DOIUrl":null,"url":null,"abstract":"Marine species are widely threatened by anthropogenic activities, including fishing and human-induced climate change. However, geographically broad and spatially explicit assessments of the simultaneous impacts of these major threats at regional scales are mostly lacking due to the practical challenges of surveying vast geographical areas and obtaining adequately resolved data. Yet, these assessments are key for identifying highly and cumulatively impacted areas and species that should be prioritized for conservation through knowledge-based management strategies. Here, we analysed a 26-year (1993–2018) time series of highly resolved remotely sensed environmental data to evaluate changes in optimal habitat availability (i.e., extent of marine areas encompassing optimal environmental conditions) for 15 species representative of small, medium and large pelagic fish inhabiting the Mediterranean Sea Large Marine Ecosystem. We then combined spatial and temporal data on fishing pressure and changes in optimal habitats to identify areas of high risk of cumulative impacts. Overall, results show how most of the studied Mediterranean pelagic species experienced a reduction in optimal habitat availability over the past decades. The few species that showed positive trends in optimal habitat availability expanded only to a small degree and hence were unlikely to compensate for the loss of key functional roles at the group level. Habitat loss concentrated in the western and central regions. Similarly, fishing pressure was found to be higher in these regions, thus overlapping with the areas experiencing a higher reduction of optimal habitat. Small and large pelagic fish were the most impacted groups, having a larger proportion of their distributions in highly, cumulative impacted areas. Redistributing fishing pressure and reducing it in highly impacted areas may alleviate the overall cumulative pressure on pelagic stocks, contributing to the necessary shift to sustainable and resilient fisheries that would ensure food security and a healthy ecosystem in this highly impacted basin.","PeriodicalId":54279,"journal":{"name":"Elementa-Science of the Anthropocene","volume":"1 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elementa-Science of the Anthropocene","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1525/elementa.2022.00028","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 2
Abstract
Marine species are widely threatened by anthropogenic activities, including fishing and human-induced climate change. However, geographically broad and spatially explicit assessments of the simultaneous impacts of these major threats at regional scales are mostly lacking due to the practical challenges of surveying vast geographical areas and obtaining adequately resolved data. Yet, these assessments are key for identifying highly and cumulatively impacted areas and species that should be prioritized for conservation through knowledge-based management strategies. Here, we analysed a 26-year (1993–2018) time series of highly resolved remotely sensed environmental data to evaluate changes in optimal habitat availability (i.e., extent of marine areas encompassing optimal environmental conditions) for 15 species representative of small, medium and large pelagic fish inhabiting the Mediterranean Sea Large Marine Ecosystem. We then combined spatial and temporal data on fishing pressure and changes in optimal habitats to identify areas of high risk of cumulative impacts. Overall, results show how most of the studied Mediterranean pelagic species experienced a reduction in optimal habitat availability over the past decades. The few species that showed positive trends in optimal habitat availability expanded only to a small degree and hence were unlikely to compensate for the loss of key functional roles at the group level. Habitat loss concentrated in the western and central regions. Similarly, fishing pressure was found to be higher in these regions, thus overlapping with the areas experiencing a higher reduction of optimal habitat. Small and large pelagic fish were the most impacted groups, having a larger proportion of their distributions in highly, cumulative impacted areas. Redistributing fishing pressure and reducing it in highly impacted areas may alleviate the overall cumulative pressure on pelagic stocks, contributing to the necessary shift to sustainable and resilient fisheries that would ensure food security and a healthy ecosystem in this highly impacted basin.
期刊介绍:
A new open-access scientific journal, Elementa: Science of the Anthropocene publishes original research reporting on new knowledge of the Earth’s physical, chemical, and biological systems; interactions between human and natural systems; and steps that can be taken to mitigate and adapt to global change. Elementa reports on fundamental advancements in research organized initially into six knowledge domains, embracing the concept that basic knowledge can foster sustainable solutions for society. Elementa is published on an open-access, public-good basis—available freely and immediately to the world.