Spatiotemporal evolution of melt ponds on Arctic sea ice

IF 4.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
M. Webster, M. Holland, N. Wright, S. Hendricks, N. Hutter, P. Itkin, B. Light, F. Linhardt, D. Perovich, Ian A. Raphael, M. Smith, Luisa von Albedyll, Jinlun Zhang
{"title":"Spatiotemporal evolution of melt ponds on Arctic sea ice","authors":"M. Webster, M. Holland, N. Wright, S. Hendricks, N. Hutter, P. Itkin, B. Light, F. Linhardt, D. Perovich, Ian A. Raphael, M. Smith, Luisa von Albedyll, Jinlun Zhang","doi":"10.1525/elementa.2021.000072","DOIUrl":null,"url":null,"abstract":"Melt ponds on sea ice play an important role in the Arctic climate system. Their presence alters the partitioning of solar radiation: decreasing reflection, increasing absorption and transmission to the ice and ocean, and enhancing melt. The spatiotemporal properties of melt ponds thus modify ice albedo feedbacks and the mass balance of Arctic sea ice. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition presented a valuable opportunity to investigate the seasonal evolution of melt ponds through a rich array of atmosphere-ice-ocean measurements across spatial and temporal scales. In this study, we characterize the seasonal behavior and variability in the snow, surface scattering layer, and melt ponds from spring melt to autumn freeze-up using in situ surveys and auxiliary observations. We compare the results to satellite retrievals and output from two models: the Community Earth System Model (CESM2) and the Marginal Ice Zone Modeling and Assimilation System (MIZMAS). During the melt season, the maximum pond coverage and depth were 21% and 22 ± 13 cm, respectively, with distribution and depth corresponding to surface roughness and ice thickness. Compared to observations, both models overestimate melt pond coverage in summer, with maximum values of approximately 41% (MIZMAS) and 51% (CESM2). This overestimation has important implications for accurately simulating albedo feedbacks. During the observed freeze-up, weather events, including rain on snow, caused high-frequency variability in snow depth, while pond coverage and depth remained relatively constant until continuous freezing ensued. Both models accurately simulate the abrupt cessation of melt ponds during freeze-up, but the dates of freeze-up differ. MIZMAS accurately simulates the observed date of freeze-up, while CESM2 simulates freeze-up one-to-two weeks earlier. This work demonstrates areas that warrant future observation-model synthesis for improving the representation of sea-ice processes and properties, which can aid accurate simulations of albedo feedbacks in a warming climate.","PeriodicalId":54279,"journal":{"name":"Elementa-Science of the Anthropocene","volume":"1 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elementa-Science of the Anthropocene","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1525/elementa.2021.000072","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 26

Abstract

Melt ponds on sea ice play an important role in the Arctic climate system. Their presence alters the partitioning of solar radiation: decreasing reflection, increasing absorption and transmission to the ice and ocean, and enhancing melt. The spatiotemporal properties of melt ponds thus modify ice albedo feedbacks and the mass balance of Arctic sea ice. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition presented a valuable opportunity to investigate the seasonal evolution of melt ponds through a rich array of atmosphere-ice-ocean measurements across spatial and temporal scales. In this study, we characterize the seasonal behavior and variability in the snow, surface scattering layer, and melt ponds from spring melt to autumn freeze-up using in situ surveys and auxiliary observations. We compare the results to satellite retrievals and output from two models: the Community Earth System Model (CESM2) and the Marginal Ice Zone Modeling and Assimilation System (MIZMAS). During the melt season, the maximum pond coverage and depth were 21% and 22 ± 13 cm, respectively, with distribution and depth corresponding to surface roughness and ice thickness. Compared to observations, both models overestimate melt pond coverage in summer, with maximum values of approximately 41% (MIZMAS) and 51% (CESM2). This overestimation has important implications for accurately simulating albedo feedbacks. During the observed freeze-up, weather events, including rain on snow, caused high-frequency variability in snow depth, while pond coverage and depth remained relatively constant until continuous freezing ensued. Both models accurately simulate the abrupt cessation of melt ponds during freeze-up, but the dates of freeze-up differ. MIZMAS accurately simulates the observed date of freeze-up, while CESM2 simulates freeze-up one-to-two weeks earlier. This work demonstrates areas that warrant future observation-model synthesis for improving the representation of sea-ice processes and properties, which can aid accurate simulations of albedo feedbacks in a warming climate.
北极海冰融化池的时空演变
海冰上的融冰池在北极气候系统中起着重要作用。它们的存在改变了太阳辐射的分配:减少反射,增加吸收和向冰和海洋的传输,加速融化。因此,融池的时空特性改变了冰反照率反馈和北极海冰的质量平衡。北极气候研究多学科漂流观测站(MOSAiC)考察提供了一个宝贵的机会,通过丰富的大气-冰-海洋测量数据,在空间和时间尺度上研究融化池的季节性演变。利用实地调查和辅助观测,研究了春季融化到秋季冻结期间积雪、地表散射层和融化池的季节特征和变化。我们将结果与两个模型的卫星检索结果和输出结果进行了比较:群落地球系统模型(CESM2)和边缘冰带模拟和同化系统(MIZMAS)。融冰期最大池塘覆盖面积和深度分别为21%和22±13 cm,其分布和深度与冰面粗糙度和冰层厚度相对应。与观测值相比,两种模式均高估了夏季融化池覆盖率,最大值分别约为41% (MIZMAS)和51% (CESM2)。这种高估对准确模拟反照率反馈具有重要意义。在观测到的冻结期间,包括雨雪在内的天气事件导致了雪深的高频变化,而池塘的覆盖和深度则保持相对恒定,直到连续冻结。两种模式都准确地模拟了融池在冻结期间的突然停止,但冻结的日期不同。MIZMAS精确地模拟了冻结的观测日期,而CESM2则模拟了一到两周之前的冻结。这项工作展示了未来观测模式综合的领域,以改善海冰过程和特性的表征,这有助于在变暖的气候中准确模拟反照率反馈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Elementa-Science of the Anthropocene
Elementa-Science of the Anthropocene Earth and Planetary Sciences-Atmospheric Science
CiteScore
6.90
自引率
5.10%
发文量
65
审稿时长
16 weeks
期刊介绍: A new open-access scientific journal, Elementa: Science of the Anthropocene publishes original research reporting on new knowledge of the Earth’s physical, chemical, and biological systems; interactions between human and natural systems; and steps that can be taken to mitigate and adapt to global change. Elementa reports on fundamental advancements in research organized initially into six knowledge domains, embracing the concept that basic knowledge can foster sustainable solutions for society. Elementa is published on an open-access, public-good basis—available freely and immediately to the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信