{"title":"Inference with Difference-in-Differences Revisited","authors":"M. Brewer, Thomas F. Crossley, R. Joyce","doi":"10.1515/jem-2017-0005","DOIUrl":null,"url":null,"abstract":"Abstract A growing literature on inference in difference-in-differences (DiD) designs has been pessimistic about obtaining hypothesis tests of the correct size, particularly with few groups. We provide Monte Carlo evidence for four points: (i) it is possible to obtain tests of the correct size even with few groups, and in many settings very straightforward methods will achieve this; (ii) the main problem in DiD designs with grouped errors is instead low power to detect real effects; (iii) feasible GLS estimation combined with robust inference can increase power considerably whilst maintaining correct test size – again, even with few groups, and (iv) using OLS with robust inference can lead to a perverse relationship between power and panel length.","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jem-2017-0005","citationCount":"93","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jem-2017-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 93
Abstract
Abstract A growing literature on inference in difference-in-differences (DiD) designs has been pessimistic about obtaining hypothesis tests of the correct size, particularly with few groups. We provide Monte Carlo evidence for four points: (i) it is possible to obtain tests of the correct size even with few groups, and in many settings very straightforward methods will achieve this; (ii) the main problem in DiD designs with grouped errors is instead low power to detect real effects; (iii) feasible GLS estimation combined with robust inference can increase power considerably whilst maintaining correct test size – again, even with few groups, and (iv) using OLS with robust inference can lead to a perverse relationship between power and panel length.