On Testing the Equality of Mean and Quantile Effects

Q3 Mathematics
Anil K. Bera, A. Galvao, Liang Wang
{"title":"On Testing the Equality of Mean and Quantile Effects","authors":"Anil K. Bera, A. Galvao, Liang Wang","doi":"10.1515/JEM-2012-0003","DOIUrl":null,"url":null,"abstract":"Abstract This paper proposes tests for equality of the mean regression (MR) and quantile regression (QR) coefficients. The tests are based on the asymptotic joint distribution of the ordinary least squares and QR estimators. First, we formally derive the asymptotic joint distribution of these estimators. Second, we propose a Wald test for equality of the MR and QR coefficients considering a single fixed quantile, and also describe a more general test using multiple quantiles simultaneously. A very salient feature of these tests is that they produce asymptotically distribution-free nature of inference. In addition, we suggest a sup-type test for equality of the coefficients uniformly over a range of quantiles. For the estimation of the variance-covariance matrix, the use sample counterparts and bootstrap methods. An important attribute of the proposed tests is that they can be used as a heteroskedasticity test. Monte Carlo studies are conducted to evaluate the finite sample properties of the tests in terms of size and power. Finally, we briefly illustrate the implementation of the tests using Engel data.","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":"3 1","pages":"47 - 62"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/JEM-2012-0003","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/JEM-2012-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 13

Abstract

Abstract This paper proposes tests for equality of the mean regression (MR) and quantile regression (QR) coefficients. The tests are based on the asymptotic joint distribution of the ordinary least squares and QR estimators. First, we formally derive the asymptotic joint distribution of these estimators. Second, we propose a Wald test for equality of the MR and QR coefficients considering a single fixed quantile, and also describe a more general test using multiple quantiles simultaneously. A very salient feature of these tests is that they produce asymptotically distribution-free nature of inference. In addition, we suggest a sup-type test for equality of the coefficients uniformly over a range of quantiles. For the estimation of the variance-covariance matrix, the use sample counterparts and bootstrap methods. An important attribute of the proposed tests is that they can be used as a heteroskedasticity test. Monte Carlo studies are conducted to evaluate the finite sample properties of the tests in terms of size and power. Finally, we briefly illustrate the implementation of the tests using Engel data.
关于均值和分位数效应相等性的检验
摘要本文提出了均值回归(MR)和分位数回归(QR)系数相等性的检验方法。这些检验是基于普通最小二乘和QR估计量的渐近联合分布。首先,我们正式导出了这些估计量的渐近联合分布。其次,我们提出了考虑单个固定分位数的MR和QR系数相等的Wald检验,并描述了同时使用多个分位数的更一般的检验。这些检验的一个非常显著的特征是,它们产生了推论的渐近无分布性质。此外,我们建议在一个分位数范围内均匀地进行系数相等的suptype检验。对于方差-协方差矩阵的估计,采用样本对应物和自举法。所提出的检验的一个重要属性是它们可以用作异方差检验。进行蒙特卡罗研究,以评估测试在大小和功率方面的有限样本特性。最后,我们简要说明了使用Engel数据的测试的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Econometric Methods
Journal of Econometric Methods Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.20
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信