{"title":"Simulation of the dynamics of the Hansbreen tidal glacier (Svalbard) based on the stochastic model","authors":"A. Kislov, A. Glazovsky","doi":"10.15356/2076-6734-2019-4-441","DOIUrl":null,"url":null,"abstract":"The dynamics of the Hansbreen tidal glacier (Svalbard) is manifested at different time scales. In addition to the long-term trend, there are noticeable inter-annual fluctuations. And the last ones are precisely the subject of this work. Based on general conclusions of the theory of temporal dynamics of the massive inertial objects, the observed inter-annual changes in the length of the glacier can be explained as a result of the accumulation of anomalies of the heat fluxes and water flows. In spite the fact that the initial model of glacier dynamics is deterministically based on the physical law of conservation of ice mass (the so-called the «minimal model» was used), the model of length change is interpreted as stochastic. From this standpoint, it is the Langevin equation, which includes the effect of random temperature anomalies that can be interpreted as a white noise. From a mathematical point of view, this process is analogous to Brownian motion, i.e. the length of the Hansbreen glacier randomly fluctuates in the vicinity of its stable equilibrium position. Based on the Langevin equation, we passed to the Fokker–Planck equation, the solution of which allowed us to obtain the distribution function of the probabilities of interannual fluctuations of glacier length, which is close to the normal law. It was shown that the possible range of the variability covers the observed interval of the length fluctuations. The pdf is close to normal distribution.","PeriodicalId":43880,"journal":{"name":"Led i Sneg-Ice and Snow","volume":"33 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Led i Sneg-Ice and Snow","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15356/2076-6734-2019-4-441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The dynamics of the Hansbreen tidal glacier (Svalbard) is manifested at different time scales. In addition to the long-term trend, there are noticeable inter-annual fluctuations. And the last ones are precisely the subject of this work. Based on general conclusions of the theory of temporal dynamics of the massive inertial objects, the observed inter-annual changes in the length of the glacier can be explained as a result of the accumulation of anomalies of the heat fluxes and water flows. In spite the fact that the initial model of glacier dynamics is deterministically based on the physical law of conservation of ice mass (the so-called the «minimal model» was used), the model of length change is interpreted as stochastic. From this standpoint, it is the Langevin equation, which includes the effect of random temperature anomalies that can be interpreted as a white noise. From a mathematical point of view, this process is analogous to Brownian motion, i.e. the length of the Hansbreen glacier randomly fluctuates in the vicinity of its stable equilibrium position. Based on the Langevin equation, we passed to the Fokker–Planck equation, the solution of which allowed us to obtain the distribution function of the probabilities of interannual fluctuations of glacier length, which is close to the normal law. It was shown that the possible range of the variability covers the observed interval of the length fluctuations. The pdf is close to normal distribution.
期刊介绍:
The journal was established with the aim of publishing new research results of the Earth cryosphere. Results of works in physics, mechanics, geophysics, and geochemistry of snow and ice are published here together with geographical aspects of the snow-ice phenomena occurrence in their interaction with other components of the environment. The challenge was to discuss the latest results of investigations carried out on Russia’s territory and works performed by Russian investigators together with foreign colleagues. Editorial board works in collaboration with Glaciological Association that is professional community of specialists in glaciology from all republics of the Former Soviet Union which are now new independent states. The journal serves as a platform for the presentation and discussion of new discoveries and results which help to elucidate the state of the Earth’s cryosphere and the characteristics of the evolution of the snow-ice processes and phenomena under the current conditions of rapid climate change.