Spatio-temporal heterogeneity of the snow cover from data of the penetrometer SnowMicroPen

IF 0.7 Q4 GEOSCIENCES, MULTIDISCIPLINARY
A. Komarov, Y. Seliverstov, P. Grebennikov, S. Sokratov
{"title":"Spatio-temporal heterogeneity of the snow cover from data of the penetrometer SnowMicroPen","authors":"A. Komarov, Y. Seliverstov, P. Grebennikov, S. Sokratov","doi":"10.15356/2076-6734-2018-4-473-485","DOIUrl":null,"url":null,"abstract":"Te paper presents the results of studies aimed at investigation of the spatial and temporal variability of snow coverstructure on the basis of strength values and its variations obtained by means of the high-resolution penetrometer SnowMicroPen. Te possibilities of fast and independent from the observer identifcation of layers (including identifcation of weakened, potentially avalanche-dangerous layers) were estimated under the climatic conditions of Moscow and the Khibiny mountains. Horizontal areas with homogeneous underlying surface and vegetation were selected for the stratigraphic studies that made it possible to avoid a possible influence of slope relief and exposure from the obtained data on the spatial and temporal variability of the snow depth structure. Te analysis of the information obtained in winter seasons 2014/15 and 2016/17 allowed constructing detailed schemes of the snow cover evolution at the Moscow site as well as assessing the inter-annual and intra-seasonal variability of its structure. Afer the SnowMicroPen data were recorded in the course of the feld works carried out in winter 2015/16 on the Khibiny educational and scientifc base of the Lomonosov Moscow State University (city of Kirovsk), the 10-meter trench on the same profle was described in details, and direct data on the snow cover structure were obtained. Te strength values resulted from the above studies characterize the layers composed of crystals of various shapes and sizes, and they are considered as the frst step to methodology of operational defnition of the spatially-inhomogeneous stratigraphy and stability of snowpack without snowpit observations. Te data analysis showed high spatial and temporal variability of the structure and properties of snow cover even at a homogeneous area, usually described by a single snowpit.","PeriodicalId":43880,"journal":{"name":"Led i Sneg-Ice and Snow","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2018-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Led i Sneg-Ice and Snow","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15356/2076-6734-2018-4-473-485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Te paper presents the results of studies aimed at investigation of the spatial and temporal variability of snow coverstructure on the basis of strength values and its variations obtained by means of the high-resolution penetrometer SnowMicroPen. Te possibilities of fast and independent from the observer identifcation of layers (including identifcation of weakened, potentially avalanche-dangerous layers) were estimated under the climatic conditions of Moscow and the Khibiny mountains. Horizontal areas with homogeneous underlying surface and vegetation were selected for the stratigraphic studies that made it possible to avoid a possible influence of slope relief and exposure from the obtained data on the spatial and temporal variability of the snow depth structure. Te analysis of the information obtained in winter seasons 2014/15 and 2016/17 allowed constructing detailed schemes of the snow cover evolution at the Moscow site as well as assessing the inter-annual and intra-seasonal variability of its structure. Afer the SnowMicroPen data were recorded in the course of the feld works carried out in winter 2015/16 on the Khibiny educational and scientifc base of the Lomonosov Moscow State University (city of Kirovsk), the 10-meter trench on the same profle was described in details, and direct data on the snow cover structure were obtained. Te strength values resulted from the above studies characterize the layers composed of crystals of various shapes and sizes, and they are considered as the frst step to methodology of operational defnition of the spatially-inhomogeneous stratigraphy and stability of snowpack without snowpit observations. Te data analysis showed high spatial and temporal variability of the structure and properties of snow cover even at a homogeneous area, usually described by a single snowpit.
基于积雪穿透计SnowMicroPen数据的积雪时空异质性研究
本文介绍了利用高分辨率穿透仪SnowMicroPen获得的积雪覆盖结构强度值及其变化的时空变化研究结果。在莫斯科和希比尼山脉的气候条件下,估计了快速和独立于观测者识别层(包括识别减弱的、潜在的雪崩危险层)的可能性。选择具有均匀下垫面和植被的水平区域进行地层学研究,可以避免所获得数据的坡度起伏和暴露对雪深结构时空变异性的可能影响。对2014/15和2016/17冬季获得的信息进行分析,可以构建莫斯科站点积雪演变的详细方案,并评估其结构的年际和季节内变化。2015/16年冬季,在莫斯科国立罗蒙诺索夫大学希比尼教育和科学基地(基洛夫斯克市)进行的实地工作过程中,记录了SnowMicroPen数据后,详细描述了同一剖面上的10米沟,并获得了积雪结构的直接数据。上述研究得到的强度值表征了由不同形状和大小的晶体组成的层,可以作为在没有雪坑观测的情况下对空间非均质地层和积雪稳定性进行操作定义方法的第一步。数据分析表明,即使在一个均匀的区域,积雪的结构和性质也具有很高的时空变异性,通常用一个雪坑来描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Led i Sneg-Ice and Snow
Led i Sneg-Ice and Snow GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
1.50
自引率
42.90%
发文量
11
审稿时长
8 weeks
期刊介绍: The journal was established with the aim of publishing new research results of the Earth cryosphere. Results of works in physics, mechanics, geophysics, and geochemistry of snow and ice are published here together with geographical aspects of the snow-ice phenomena occurrence in their interaction with other components of the environment. The challenge was to discuss the latest results of investigations carried out on Russia’s territory and works performed by Russian investigators together with foreign colleagues. Editorial board works in collaboration with Glaciological Association that is professional community of specialists in glaciology from all republics of the Former Soviet Union which are now new independent states. The journal serves as a platform for the presentation and discussion of new discoveries and results which help to elucidate the state of the Earth’s cryosphere and the characteristics of the evolution of the snow-ice processes and phenomena under the current conditions of rapid climate change.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信